Παρακολούθηση
Zhongsheng Sang
Zhongsheng Sang
Columbia University, Northwestern University
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα u.northwestern.edu - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode
W Che, M Wei, Z Sang, Y Ou, Y Liu, J Liu
Journal of Alloys and Compounds 731, 381-388, 2018
1202018
Recent developments on aqueous sodium-ion batteries
Y You, Z Sang, J Liu
Materials Technology 31 (9), 501-509, 2016
312016
Convolution Hierarchical Deep-learning Neural Networks (C-HiDeNN): finite elements, isogeometric analysis, tensor decomposition, and beyond
Y Lu, H Li, L Zhang, C Park, S Mojumder, S Knapik, Z Sang, S Tang, ...
Computational Mechanics 72 (2), 333-362, 2023
242023
Ruddlesden-Popper type La2NiO4+ δ oxide as a pseudocapacitor electrode
Z Sang, W Che, S Yang, Y Liu
Materials Letters 217, 23-26, 2018
192018
Multiphysics modeling of mixing and material transport in additive manufacturing with multicomponent powder beds
A Samaei, Z Sang, JA Glerum, JE Mogonye, GJ Wagner
Additive Manufacturing 67, 103481, 2023
162023
Benchmark study of melt pool and keyhole dynamics, laser absorptance, and porosity in additive manufacturing of Ti-6Al-4V
A Samaei, JP Leonor, Z Gan, Z Sang, X Xie, BJ Simonds, WK Liu, ...
Progress in Additive Manufacturing 10 (1), 491-515, 2025
32025
Convolutional Hierarchical Deep Learning Neural Networks-Tensor Decomposition (C-HiDeNN-TD): a scalable surrogate modeling approach for large-scale physical systems
J Guo, C Park, X Xie, Z Sang, GJ Wagner, WK Liu
arXiv preprint arXiv:2409.00329, 2024
12024
Phase change and solute mixing in multicomponent metal additive manufacturing: A new numerical approach
Z Sang, A Samaei, GJ Wagner
Computer Methods in Applied Mechanics and Engineering 420, 116754, 2024
12024
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–8