Παρακολούθηση
Lujun Zhang
Lujun Zhang
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα ou.edu
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Can artificial intelligence and data-driven machine learning models match or even replace process-driven hydrologic models for streamflow simulation?: A case study of four …
T Kim, T Yang, S Gao, L Zhang, Z Ding, X Wen, JJ Gourley, Y Hong
Journal of Hydrology 598, 126423, 2021
1152021
A large-scale comparison of Artificial Intelligence and Data Mining (AI&DM) techniques in simulating reservoir releases over the Upper Colorado Region
T Yang, L Zhang, T Kim, Y Hong, D Zhang, Q Peng
Journal of Hydrology 602, 126723, 2021
492021
Evaluation of Subseasonal-to-Seasonal (S2S) precipitation forecast from the North American Multi-Model ensemble phase II (NMME-2) over the contiguous US
L Zhang, T Kim, T Yang, Y Hong, Q Zhu
Journal of Hydrology 603, 127058, 2021
412021
A field investigation on rill development and flow hydrodynamics under different upslope inflow and slope gradient conditions
P Tian, C Pan, X Xu, T Wu, T Yang, L Zhang
Hydrology Research 51 (5), 1201-1220, 2020
332020
Near real-time hurricane rainfall forecasting using convolutional neural network models with Integrated Multi-satellitE Retrievals for GPM (IMERG) product
T Kim, T Yang, L Zhang, Y Hong
Atmospheric Research 270, 106037, 2022
292022
Improving Subseasonal-to-Seasonal forecasts in predicting the occurrence of extreme precipitation events over the contiguous US using machine learning models
L Zhang, T Yang, S Gao, Y Hong, Q Zhang, X Wen, C Cheng
Atmospheric Research 281, 106502, 2023
152023
Investigation of hydrometeorological influences on reservoir releases using explainable machine learning methods
M Fan, L Zhang, S Liu, T Yang, D Lu
Frontiers in Water 5, 1112970, 2023
102023
Identifying hydrometeorological factors influencing reservoir releases using machine learning methods
M Fan, L Zhang, S Liu, T Yang, D Lu
2022 IEEE International Conference on Data Mining Workshops (ICDMW), 1102-1110, 2022
62022
Effects assessment of water environment treatment projects based on SWMM-EFDC coupling simulation in Xinfeng River Basin
C Yan, XIA Rui, W Lu, SUN Mingdong, Z Lujun, MA Shuqin, JIA Ruining, ...
Journal of Environmental Engineering Technology 11 (4), 777-788, 2021
6*2021
Adapting subseasonal-to-seasonal (S2S) precipitation forecast at watersheds for hydrologic ensemble streamflow forecasting with a machine learning-based post-processing approach
L Zhang, S Gao, T Yang
Journal of Hydrology 631, 130643, 2024
42024
A Deep State Space Model for Rainfall-Runoff Simulations
Y Wang, L Zhang, A Yu, NB Erichson, T Yang
arXiv preprint arXiv:2501.14980, 2025
2025
Enhancing Subseasonal Precipitation Forecasts through a Hybrid Deep Learning and Statistical Approach
L Zhang, T Yang, KM Dresback, C Szpilka, RL Kolar
AGU24, 2024
2024
Using Long Short-term Memory (LSTM) to merge precipitation data over mountainous area in Sierra Nevada
Y Wang, L Zhang
arXiv preprint arXiv:2404.10135, 2024
2024
A Framework of Subseasonal-to-seasonal (S2S) Ensemble Hydrological Forecasting at a Watershed Scale Using Dynamical Precipitation Forecast: Forecast Verification, Adaptation …
L Zhang
2023
Investigating the Source of the Predictability of Streamflow at a Subseasonal-to-Seasonal (S2S) Timescale Using a Combined Ensemble Streamflow Prediction (ESP) and Reversed ESP …
A Adhikari, L Zhang, T Yang
AGU Fall Meeting Abstracts 2023 (1767), H23N-1767, 2023
2023
Adapting Subseasonal-to-Seasonal (S2S) precipitation forecasts at a watershed scale for hydrologic Ensemble Streamflow Prediction (ESP) using a Machine Learning-based post …
L Zhang, S Gao, T Yang
AGU Fall Meeting Abstracts 2023, A14E-04, 2023
2023
A Python-based script for coupling SWMM and EFDC models
L Zhang, Z Yang, T Yang, M Sun, Y Chen, L Wang
AGU Fall Meeting Abstracts 2019, H53K-1917, 2019
2019
Quantifying the Impact of Snow Water Equivalent on Spring-Summer Water Supply Forecasts in the Western US Using Gradient Boosting Regressor
H Yue, Y Wang, L Zhang, T Yang
AGU24, 0
A Mass Conservation Relaxed (MCR) LSTM Model for Streamflow Simulation: A Large-Scale Verification over 531 Watersheds across CONUS
T Yang, Y Wang, L Zhang, NB Erichson
AGU24, 0
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–19