Παρακολούθηση
Balázs Kovács
Balázs Kovács
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα math.uni-paderborn.de - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
A convergent evolving finite element algorithm for mean curvature flow of closed surfaces
B Kovács, B Li, C Lubich
Numerische Mathematik 143 (4), 797-853, 2019
782019
A-stable time discretizations preserve maximal parabolic regularity
B Kovács, B Li, C Lubich
SIAM J. Numer. Anal. 54 (6), 3600–3624., 2016
692016
Numerical analysis of parabolic problems with dynamic boundary conditions
B Kovács, C Lubich
IMA Journal of Numerical Analysis 37 (1), 1-39., doi.org/10.1093/imanum/drw015, 2016
492016
Higher-order linearly implicit full discretization of the Landau-Lifschitz-Gilbert equation
G Akrivis, M Feischl, B Kovács, C Lubich
arXiv 1903.05415, 2019
432019
Convergence of finite elements on an evolving surface driven by diffusion on the surface
B Kovács, B Li, C Lubich, CA Power Guerra
Numerische Mathematik 137 (3), 643–689, 2017
43*2017
A convergent evolving finite element algorithm for Willmore flow of closed surfaces
B Kovács, B Li., C Lubich
arXiv:2007.15257, 1--50, 2020
412020
High-order evolving surface finite element method for parabolic problems on evolving surfaces
B Kovács
IMA Journal of Numerical Analysis, DOI: https://doi.org/10.1093/imanum/drx013, 2016
352016
Viscoelastic Cahn–Hilliard models for tumor growth
H Garcke, B Kovács, D Trautwein
Mathematical Models and Methods in Applied Sciences 32 (13), 2673-2758, 2022
332022
Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type
B Kovács, C Lubich
Numerische Mathematik, 2018
222018
A convergent algorithm for forced mean curvature flow driven by diffusion on the surface
B Kovács, B Li, C Lubich
arXiv preprint arXiv:1912.05924, 2019
202019
Stable and convergent fully discrete interior-exterior coupling of Maxwell's equations
B Kovács, C Lubich
DOI: http://dx.doi.org/10.1007/s00211-017-0868-8, arXiv:1605.04086, 2016
192016
Finite element error analysis of wave equations with dynamic boundary conditions: estimates
D Hipp, B Kovács
arXiv:1901.01792, 2019
152019
Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces
B Kovács, CA Power Guerra
Numerical Methods for Partial Differential Equations 32 (4), 1200--1231, 2016
152016
Maximum norm stability and error estimates for the evolving surface finite element method
B Kovács, CA Power Guerra
arXiv:1510.00605v2, 2015
152015
Linearly implicit full discretization of surface evolution
B Kovács, C Lubich
Numerische Mathematik 140, 121-152, 2018
142018
Higher-oder time discretizations with ALE finite elements for parabolic problems on evolving surfaces
B Kovács, CA Power Guerra
IMA J. Numer. Anal., 2016
14*2016
Error estimates for the Cahn–Hilliard equation with dynamic boundary conditions
P Harder, B Kovács
IMA Journal of Numerical Analysis 42 (3), 2589-2620, 2022
132022
Numerical analysis for the interaction of mean curvature flow and diffusion on closed surfaces
CM Elliott, H Garcke, B Kovács
Numerische Mathematik 151 (4), 873-925, 2022
122022
Time-dependent electromagnetic scattering from thin layers
J Nick, B Kovács, C Lubich
Numerische Mathematik 150 (4), 1123-1164, 2022
112022
Computing arbitrary Lagrangian Eulerian maps for evolving surfaces
B Kovács
arXiv:1612.01701v2, 2017
92017
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20