Παρακολούθηση
Andrew Zahrt
Andrew Zahrt
Assistant Professor of Chemistry, University of Pennsylvania
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα sas.upenn.edu - Αρχική σελίδα
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning
AF Zahrt, JJ Henle, BT Rose, Y Wang, WT Darrow, SE Denmark
Science 363 (6424), eaau5631, 2019
5352019
Structural, kinetic, and computational characterization of the elusive arylpalladium (II) boronate complexes in the Suzuki–Miyaura reaction
AA Thomas, H Wang, AF Zahrt, SE Denmark
Journal of the American Chemical Society 139 (10), 3805-3821, 2017
1872017
Quantitative structure–selectivity relationships in enantioselective catalysis: past, present, and future
AF Zahrt, SV Athavale, SE Denmark
Chemical reviews 120 (3), 1620-1689, 2019
1652019
Elucidating the role of the boronic esters in the Suzuki–Miyaura reaction: structural, kinetic, and computational investigations
AA Thomas, AF Zahrt, CP Delaney, SE Denmark
Journal of the American Chemical Society 140 (12), 4401-4416, 2018
1492018
Development of a computer-guided workflow for catalyst optimization. descriptor validation, subset selection, and training set analysis
JJ Henle, AF Zahrt, BT Rose, WT Darrow, Y Wang, SE Denmark
Journal of the American Chemical Society 142 (26), 11578-11592, 2020
792020
Dreams, false starts, dead ends, and redemption: a chronicle of the evolution of a chemoinformatic workflow for the optimization of enantioselective catalysts
NI Rinehart, AF Zahrt, JJ Henle, SE Denmark
Accounts of chemical research 54 (9), 2041-2054, 2021
502021
A machine-learning tool to predict substrate-adaptive conditions for Pd-catalyzed C–N couplings
NI Rinehart, RK Saunthwal, J Wellauer, AF Zahrt, L Schlemper, AS Shved, ...
Science 381 (6661), 965-972, 2023
472023
Machine-learning-guided discovery of electrochemical reactions
AF Zahrt, Y Mo, KY Nandiwale, R Shprints, E Heid, KF Jensen
Journal of the American Chemical Society 144 (49), 22599-22610, 2022
452022
Continuous stirred-tank reactor cascade platform for self-optimization of reactions involving solids
KY Nandiwale, T Hart, AF Zahrt, AMK Nambiar, PT Mahesh, Y Mo, ...
Reaction Chemistry & Engineering 7 (6), 1315-1327, 2022
432022
Cautionary guidelines for machine learning studies with combinatorial datasets
AF Zahrt, JJ Henle, SE Denmark
ACS Combinatorial Science 22 (11), 586-591, 2020
412020
Evaluating continuous chirality measure as a 3D descriptor in chemoinformatics applied to asymmetric catalysis
AF Zahrt, SE Denmark
Tetrahedron 75 (13), 1841-1851, 2019
332019
Computational methods for training set selection and error assessment applied to catalyst design: guidelines for deciding which reactions to run first and which to run next
AF Zahrt, BT Rose, WT Darrow, JJ Henle, SE Denmark
Reaction Chemistry & Engineering 6 (4), 694-708, 2021
242021
A Conformer‐Dependent, Quantitative Quadrant Model
AF Zahrt, NI Rinehart, SE Denmark
European Journal of Organic Chemistry 2021 (17), 2343-2354, 2021
122021
Machine Learning to Develop Peptide Catalysts─ Successes, Limitations, and Opportunities
T Schnitzer, M Schnurr, AF Zahrt, N Sakhaee, SE Denmark, ...
ACS Central Science 10 (2), 367-373, 2024
82024
Leveraging machine learning for enantioselective catalysis: From dream to reality
NI Rinehart, AF Zahrt, S Denmark
Chimia 75 (7-8), 2021
72021
Chemoinformatic Catalyst Selection Methods for the Optimization of Copper–Bis (oxazoline)-Mediated, Asymmetric, Vinylogous Mukaiyama Aldol Reactions
CL Olen, AF Zahrt, SW Reilly, D Schultz, K Emerson, D Candito, X Wang, ...
ACS Catalysis 14 (4), 2642-2655, 2024
52024
Development and Validation of a Chemoinformatic Workflow for Predicting Reaction Yield for Pd-Catalyzed CN Couplings with Substrate Generalizability
NI Rinehart, RK Saunthwal, J Wellauer, AF Zahrt, L Schlemper, AS Shved, ...
32023
Extrapolative prediction of enantioselectivity enabled by computer-driven workflow, new molecular representations and machine learning
SE Denmark, AF Zahrt, JJ Henle, BT Rose, Y Wang, WT Darrow
US Patent 11,664,093, 2023
22023
Development and Validation of a Chemoinformatic Workflow for Predicting Reaction Yield for Pd-Catalyzed CN Couplings with Substrate Generalizability
NI Rinehart, RK Saunthwal, J Wellauer, AF Zahrt, L Schlemper, AS Shved, ...
ChemRxiv, 2022
22022
Application of Chemoinformatics in Asymmetric Catalysis
AF ZAHRT, JJ HENLE, BT ROSE, Y WANG, WT DARROW, SE DENMARK
Science, 363, 2019
22019
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–20