Παρακολούθηση
Arka Pal
Arka Pal
Ritual AI
Η διεύθυνση ηλεκτρονικού ταχυδρομείου έχει επαληθευτεί στον τομέα ritual.net
Τίτλος
Παρατίθεται από
Παρατίθεται από
Έτος
beta-vae: Learning basic visual concepts with a constrained variational framework.
I Higgins, L Matthey, A Pal, CP Burgess, X Glorot, MM Botvinick, ...
ICLR (Poster) 3, 2017
57832017
Understanding disentangling in -VAE
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
12982018
Darla: Improving zero-shot transfer in reinforcement learning
I Higgins, A Pal, A Rusu, L Matthey, C Burgess, A Pritzel, M Botvinick, ...
International Conference on Machine Learning, 1480-1490, 2017
5402017
Early visual concept learning with unsupervised deep learning
I Higgins, L Matthey, X Glorot, A Pal, B Uria, C Blundell, S Mohamed, ...
arXiv preprint arXiv:1606.05579, 2016
2082016
International Conference on Learning Representations
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed, ...
ICLR 2017, Toulon, France, 2017
1972017
Scan: Learning hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Bosnjak, ...
arXiv preprint arXiv:1707.03389, 2017
1472017
Smaug: Fixing failure modes of preference optimisation with dpo-positive
A Pal, D Karkhanis, S Dooley, M Roberts, S Naidu, C White
arXiv preprint arXiv:2402.13228, 2024
902024
Understanding disentangling in β
CP Burgess, I Higgins, A Pal, L Matthey, N Watters, G Desjardins, ...
arXiv preprint arXiv:1804.03599, 2018
582018
Lerchner
I Higgins, L Matthey, A Pal, C Burgess, X Glorot, M Botvinick, S Mohamed
A. betavae: Learning basic visual concepts with a constrained variational …, 2016
532016
Livebench: A challenging, contamination-free llm benchmark
C White, S Dooley, M Roberts, A Pal, B Feuer, S Jain, R Shwartz-Ziv, ...
arXiv preprint arXiv:2406.19314, 2024
422024
Giraffe: Adventures in expanding context lengths in llms
A Pal, D Karkhanis, M Roberts, S Dooley, A Sundararajan, S Naidu
arXiv preprint arXiv:2308.10882, 2023
372023
Scan: learning abstract hierarchical compositional visual concepts
I Higgins, N Sonnerat, L Matthey, A Pal, CP Burgess, M Botvinick, ...
arXiv preprint arXiv:1707.03389, 2017
292017
Large Language Models Must Be Taught to Know What They Don't Know
S Kapoor, N Gruver, M Roberts, K Collins, A Pal, U Bhatt, A Weller, ...
arXiv preprint arXiv:2406.08391, 2024
142024
Learning visual concepts using neural networks
A Lerchner, I Higgins, N Sonnerat, AT Pal, D Hassabis, ...
US Patent 11,354,823, 2022
132022
Training variational autoencoders to generate disentangled latent factors
L Matthey-de-l'Endroit, AT Pal, S Mohamed, X Glorot, I Higgins, ...
US Patent 10,373,055, 2019
132019
Calibration-Tuning: Teaching Large Language Models to Know What They Don’t Know
S Kapoor, N Gruver, M Roberts, A Pal, S Dooley, M Goldblum, A Wilson
Proceedings of the 1st Workshop on Uncertainty-Aware NLP (UncertaiNLP 2024 …, 2024
92024
vTune: Verifiable Fine-Tuning for LLMs Through Backdooring
E Zhang, A Pal, A Potti, M Goldblum
arXiv preprint arXiv:2411.06611, 2024
2024
Learning visual concepts using neural networks
A Lerchner, I Higgins, N Sonnerat, AT Pal, D Hassabis, ...
US Patent 11,769,057, 2023
2023
Training variational autoencoders to generate disentangled latent factors
L Matthey-de-l'Endroit, AT Pal, S Mohamed, X Glorot, I Higgins, ...
US Patent 10,643,131, 2020
2020
Δεν είναι δυνατή η εκτέλεση της ενέργειας από το σύστημα αυτή τη στιγμή. Προσπαθήστε ξανά αργότερα.
Άρθρα 1–19