Reducing the Cost of CO2 Capture from Flue Gases Using Pressure Swing Adsorption MT Ho, GW Allinson, DE Wiley Industrial & Engineering Chemistry Research 47 (14), 4883-4890, 2008 | 709 | 2008 |
Emerging CO2 capture systems JC Abanades, B Arias, A Lyngfelt, T Mattisson, DE Wiley, H Li, MT Ho, ... International Journal of Greenhouse Gas Control 40, 126-166, 2015 | 538 | 2015 |
Reducing the Cost of CO2 Capture from Flue Gases Using Membrane Technology MT Ho, GW Allinson, DE Wiley Industrial & Engineering Chemistry Research 47 (5), 1562-1568, 2008 | 309 | 2008 |
Comparison of MEA capture cost for low CO2 emissions sources in Australia MT Ho, GW Allinson, DE Wiley International Journal of Greenhouse Gas Control 5 (1), 49-60, 2011 | 162 | 2011 |
Reducing the Cost of CO2 Capture from Flue Gases Using Aqueous Chemical Absorption A Raksajati, MT Ho, DE Wiley Industrial & Engineering Chemistry Research 52 (47), 16887-16901, 2013 | 140 | 2013 |
Comparison of CO2 capture economics for iron and steel mills MT Ho, A Bustamante, DE Wiley International Journal of Greenhouse Gas Control 19, 145-159, 2013 | 136 | 2013 |
Exergetic and exergoeconomic analysis of post-combustion CO2 capture using MEA-solvent chemical absorption G Ferrara, A Lanzini, P Leone, MT Ho, DE Wiley Energy 130, 113-128, 2017 | 134 | 2017 |
Cost competitive membrane—cryogenic post-combustion carbon capture CA Scholes, MT Ho, DE Wiley, GW Stevens, SE Kentish International Journal of Greenhouse Gas Control 17, 341-348, 2013 | 116 | 2013 |
A comparative study of discrete velocity methods for low-speed rarefied gas flows P Wang, MT Ho, L Wu, Z Guo, Y Zhang Computers & Fluids 161, 33-46, 2018 | 98 | 2018 |
Assessment of opportunities for CO2 capture at iron and steel mills: an Australian perspective DE Wiley, MT Ho, A Bustamante Energy procedia 4, 2654-2661, 2011 | 86 | 2011 |
Economics of CO2 and mixed gas geosequestration of flue gas using gas separation membranes MT Ho, G Leamon, GW Allinson, DE Wiley Industrial & engineering chemistry research 45 (8), 2546-2552, 2006 | 86 | 2006 |
On the apparent permeability of porous media in rarefied gas flows L Wu, MT Ho, L Germanou, XJ Gu, C Liu, K Xu, Y Zhang Journal of Fluid Mechanics 822, 398-417, 2017 | 81 | 2017 |
Developments in the CO2CRC UNO MK 3 process: a multi-component solvent process for large scale CO2 capture C Anderson, T Harkin, M Ho, K Mumford, A Qader, G Stevens, B Hooper Energy Procedia 37, 225-232, 2013 | 73 | 2013 |
Membrane gas separation processes for CO2 capture from cement kiln flue gas CA Scholes, MT Ho, AA Aguiar, DE Wiley, GW Stevens, SE Kentish International Journal of Greenhouse Gas Control 24, 78-86, 2014 | 68 | 2014 |
Factors affecting the cost of capture for Australian lignite coal fired power plants MT Ho, GW Allinson, DE Wiley Energy Procedia 1 (1), 763-770, 2009 | 67 | 2009 |
Rarefied gas flow through a long rectangular channel of variable cross section I Graur, MT Ho Vacuum 101, 328-332, 2014 | 64 | 2014 |
CO2 capture from natural gas combined cycles by CO2 selective membranes DM Turi, M Ho, MC Ferrari, P Chiesa, DE Wiley, MC Romano International Journal of Greenhouse Gas Control 61, 168-183, 2017 | 63 | 2017 |
Comparison of CO2 separation options for geo-sequestration: are membranes competitive? MT Ho, G Allinson, DE Wiley Desalination 192 (1-3), 288-295, 2006 | 63 | 2006 |
The economics of helium separation and purification by gas separation membranes CA Scholes, UK Gosh, MT Ho Industrial & Engineering Chemistry Research 56 (17), 5014-5020, 2017 | 61 | 2017 |
A multi-level parallel solver for rarefied gas flows in porous media MT Ho, L Zhu, L Wu, P Wang, Z Guo, ZH Li, Y Zhang Computer Physics Communications 234, 14-25, 2019 | 56 | 2019 |