Codegen: An open large language model for code with multi-turn program synthesis E Nijkamp, B Pang, H Hayashi, L Tu, H Wang, Y Zhou, S Savarese, ... arXiv preprint arXiv:2203.13474, 2022 | 1018 | 2022 |
Deep learning with tensorflow: A review B Pang, E Nijkamp, YN Wu Journal of Educational and Behavioral Statistics 45 (2), 227-248, 2020 | 501 | 2020 |
A conversational paradigm for program synthesis E Nijkamp, B Pang, H Hayashi, L Tu, H Wang, Y Zhou, S Savarese, ... arXiv preprint arXiv:2203.13474 30, 2022 | 156 | 2022 |
Learning latent space energy-based prior model B Pang, T Han, E Nijkamp, SC Zhu, YN Wu Advances in Neural Information Processing Systems 33, 21994-22008, 2020 | 151 | 2020 |
Trajectory prediction with latent belief energy-based model B Pang, T Zhao, X Xie, YN Wu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 103 | 2021 |
Towards holistic and automatic evaluation of open-domain dialogue generation B Pang, E Nijkamp, W Han, L Zhou, Y Liu, K Tu Association for Computational Linguistics (ACL), 2020 | 85 | 2020 |
Latent diffusion energy-based model for interpretable text modeling P Yu, S Xie, X Ma, B Jia, B Pang, R Gao, Y Zhu, SC Zhu, YN Wu arXiv preprint arXiv:2206.05895, 2022 | 84 | 2022 |
Robust transfer learning with pretrained language models through adapters W Han, B Pang, Y Wu arXiv preprint arXiv:2108.02340, 2021 | 71 | 2021 |
Rlhf workflow: From reward modeling to online rlhf H Dong, W Xiong, B Pang, H Wang, H Zhao, Y Zhou, N Jiang, D Sahoo, ... arXiv preprint arXiv:2405.07863, 2024 | 67 | 2024 |
Long document summarization with top-down and bottom-up inference B Pang, E Nijkamp, W Kryściński, S Savarese, Y Zhou, C Xiong arXiv preprint arXiv:2203.07586, 2022 | 53 | 2022 |
Learning multi-layer latent variable model via variational optimization of short run mcmc for approximate inference E Nijkamp, B Pang, T Han, L Zhou, SC Zhu, YN Wu Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 52 | 2020 |
Joint training of variational auto-encoder and latent energy-based model T Han, E Nijkamp, L Zhou, B Pang, SC Zhu, YN Wu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 52 | 2020 |
Xgen-7b technical report E Nijkamp, T Xie, H Hayashi, B Pang, C Xia, C Xing, J Vig, S Yavuz, ... arXiv preprint arXiv:2309.03450, 2023 | 29 | 2023 |
Latent space energy-based model of symbol-vector coupling for text generation and classification B Pang, YN Wu International Conference on Machine Learning, 8359-8370, 2021 | 27 | 2021 |
Mcmc should mix: Learning energy-based model with neural transport latent space mcmc E Nijkamp, R Gao, P Sountsov, S Vasudevan, B Pang, SC Zhu, YN Wu arXiv preprint arXiv:2006.06897, 2020 | 27 | 2020 |
Learning energy-based model with flow-based backbone by neural transport mcmc E Nijkamp, R Gao, P Sountsov, S Vasudevan, B Pang, SC Zhu, YN Wu arXiv preprint arXiv:2006.06897 2, 2020 | 23 | 2020 |
Artificial modification on lateral hydrological connectivity promotes range expansion of invasive Spartina alterniflora in salt marshes of the Yellow River delta, China T Xie, Q Wang, Z Ning, C Chen, B Cui, J Bai, W Shi, B Pang Science of the Total Environment 769, 144476, 2021 | 21 | 2021 |
Adaptability of common coastal wetland plant populations to future sea level rise B Pang, T Xie, B Cui, Q Wang, Z Ning, Z Liu, C Chen, Y Lu, X Zhao Ecosystem Health and Sustainability 9, 0005, 2023 | 11 | 2023 |
Learning probabilistic models from generator latent spaces with hat ebm M Hill, E Nijkamp, J Mitchell, B Pang, SC Zhu Advances in Neural Information Processing Systems 35, 928-940, 2022 | 11 | 2022 |
Learning latent space energy-based prior model for molecule generation B Pang, T Han, YN Wu arXiv preprint arXiv:2010.09351, 2020 | 11 | 2020 |