Efficient statistical validation with edge cases to evaluate highly automated vehicles D Karunakaran, S Worrall, E Nebot 2020 IEEE 23rd International Conference on Intelligent Transportation …, 2020 | 49 | 2020 |
Automatic lane change scenario extraction and generation of scenarios in OpenX format from real-world data D Karunakaran, JS Berrio, S Worrall, E Nebot arXiv preprint arXiv:2203.07521, 2022 | 12 | 2022 |
Efficient falsification approach for autonomous vehicle validation using a parameter optimisation technique based on reinforcement learning D Karunakaran, S Worrall, E Nebot arXiv preprint arXiv:2011.07699, 2020 | 12 | 2020 |
Generating edge cases for testing autonomous vehicles using real-world data D Karunakaran, JS Berrio Perez, S Worrall Sensors 24 (1), 108, 2023 | 7 | 2023 |
Challenges of testing highly automated vehicles: A literature review D Karunakaran, JS Berrio, S Worrall, E Nebot 2022 IEEE International Conference on Recent Advances in Systems Science and …, 2022 | 7 | 2022 |
Critical concrete scenario generation using scenario-based falsification D Karunakaran, JS Berrio, S Worrall, E Nebot 2022 IEEE International Conference on Recent Advances in Systems Science and …, 2022 | 7 | 2022 |
Parameterisation of lane-change scenarios from real-world data D Karunakaran, JS Berrio, S Worrall, E Nebot 2022 IEEE 25th International Conference on Intelligent Transportation …, 2022 | 5 | 2022 |
Concrete scenario generation with a focus on edge cases for the safety assessment of highly automated vehicles D Karunakaran | | 2023 |