Neural ode processes A Norcliffe, C Bodnar, B Day, J Moss, P Liò arXiv preprint arXiv:2103.12413, 2021 | 79 | 2021 |
GAUCHE: a library for Gaussian processes in chemistry RR Griffiths, L Klarner, H Moss, A Ravuri, S Truong, Y Du, S Stanton, ... Advances in Neural Information Processing Systems 36, 2024 | 47 | 2024 |
Approximate latent force model inference JD Moss, FL Opolka, B Dumitrascu, P Lió arXiv preprint arXiv:2109.11851, 2021 | 7 | 2021 |
Microdroplet screening rapidly profiles a biocatalyst to enable its AI-assisted engineering M Gantz, SV Mathis, FEH Nintzel, PJ Zurek, T Knaus, E Patel, D Boros, ... bioRxiv, 2024.04. 08.588565, 2024 | 5 | 2024 |
GAUCHE: A Library for Gaussian Processes in Chemistry. 2022 RR Griffiths, L Klarner, HB Moss, A Ravuri, S Truong, B Rankovic, Y Du, ... arXiv preprint arXiv:2212.04450, 0 | 5 | |
Modular Neural Ordinary Differential Equations M Zhu, P Lio, J Moss arXiv preprint arXiv:2109.07359, 2021 | 4 | 2021 |
Meta-learning using privileged information for dynamics B Day, A Norcliffe, J Moss, P Liò arXiv preprint arXiv:2104.14290, 2021 | 4 | 2021 |
GAUCHE: A library for Gaussian processes and Bayesian optimisation in chemistry RR Griffiths, L Klarner, A Ravuri, S Truong, B Rankovic, Y Du, A Jamasb, ... ICML 2022 Workshop on Adaptive Experimental Design and Active Learning in …, 2022 | 2 | 2022 |
Neural ODE Processes: A Short Summary ALI Norcliffe, C Bodnar, B Day, J Moss, P Lio The Symbiosis of Deep Learning and Differential Equations, 2021 | 1 | 2021 |
Gene regulatory network inference with latent force models J Moss, P Lió arXiv preprint arXiv:2010.02555, 2020 | 1 | 2020 |
Introduction to Probabilistic Machine Learning J Moss | | 2020 |
Deep Kernel Learning of Nonlinear Latent Force Models J Moss, J England, P Lio Transactions on Machine Learning Research, 0 | | |
AI-accelerated biocatalyst engineering by rapid microfluidic sequence-function mapping M Gantz, SV Mathis, FEH Nintzel, PJ Zurek, T Knaus, ES Patel, D Boros, ... ICLR 2024 Workshop on Generative and Experimental Perspectives for …, 0 | | |
Meta-Learning Nonlinear Dynamical Systems with Deep Kernels J Moss, F Opolka, J England, P Lio | | |
Pseudotime Diffusion JD Moss, JL England, I Petach, P Lió | | |
Meta-Learning Deep Kernels for Latent Force Inference J Moss, F Opolka, J England, P Lió 1st Workshop on the Synergy of Scientific and Machine Learning Modeling …, 0 | | |