Deep learning for radiotherapy outcome prediction using dose data–a review AL Appelt, B Elhaminia, A Gooya, A Gilbert, M Nix Clinical Oncology 34 (2), e87-e96, 2022 | 44 | 2022 |
A probabilistic framework for copy-move forgery detection based on Markov Random Field B Elhaminia, A Harati, A Taherinia Multimedia Tools and Applications 78, 25591-25609, 2019 | 16 | 2019 |
Toxicity prediction in pelvic radiotherapy using multiple instance learning and cascaded attention layers B Elhaminia, A Gilbert, J Lilley, M Abdar, AF Frangi, A Scarsbrook, ... IEEE Journal of Biomedical and Health Informatics 27 (4), 1958-1966, 2023 | 3 | 2023 |
Deep learning with visual explanation for radiotherapy-induced toxicity prediction B Elhaminia, A Gilbert, AF Frangi, A Scarsbrook, J Lilley, A Appelt, ... Medical Imaging 2023: Computer-Aided Diagnosis 12465, 445-450, 2023 | | 2023 |
Machine learning for outcome prediction after pelvic radiotherapy B Elhaminia University of Leeds, 2023 | | 2023 |
Deep learning combining imaging, dose and clinical data for predicting bowel toxicity after pelvic radiotherapy B Elhaminia, A Gilbert, A Scarsbrook, J Lilley, A Appelt, A Gooya Physics and Imaging in Radiation Oncology, 0 | | |