Graph-based object classification for neuromorphic vision sensing Y Bi, A Chadha, A Abbas, E Bourtsoulatze, Y Andreopoulos Proceedings of the IEEE/CVF international conference on computer vision, 491-501, 2019 | 191 | 2019 |
Graph-based spatio-temporal feature learning for neuromorphic vision sensing Y Bi, A Chadha, A Abbas, E Bourtsoulatze, Y Andreopoulos IEEE Transactions on Image Processing 29, 9084-9098, 2020 | 145 | 2020 |
Improved techniques for adversarial discriminative domain adaptation A Chadha, Y Andreopoulos IEEE Transactions on Image Processing 29, 2622-2637, 2019 | 73 | 2019 |
Video classification with CNNs: Using the codec as a spatio-temporal activity sensor A Chadha, A Abbas, Y Andreopoulos IEEE Transactions on Circuits and Systems for Video Technology 29 (2), 475-485, 2017 | 43 | 2017 |
Deep perceptual preprocessing for video coding A Chadha, Y Andreopoulos Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 35 | 2021 |
Voronoi-based compact image descriptors: Efficient region-of-interest retrieval with VLAD and deep-learning-based descriptors A Chadha, Y Andreopoulos IEEE Transactions on Multimedia 19 (7), 1596-1608, 2017 | 30 | 2017 |
Deep video precoding E Bourtsoulatze, A Chadha, I Fadeev, V Giotsas, Y Andreopoulos IEEE Transactions on Circuits and Systems for Video Technology 30 (12), 4913 …, 2019 | 20 | 2019 |
Neuromorphic vision sensing for CNN-based action recognition A Chadha, Y Bi, A Abbas, Y Andreopoulos ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and …, 2019 | 19 | 2019 |
Rate-accuracy trade-off in video classification with deep convolutional neural networks M Jubran, A Abbas, A Chadha, Y Andreopoulos IEEE Transactions on Circuits and Systems for Video Technology 30 (1), 145-154, 2018 | 15 | 2018 |
Compressed-domain video classification with deep neural networks:“There's way too much information to decode the matrix” A Chadha, A Abbas, Y Andreopoulos 2017 IEEE International Conference on Image Processing (ICIP), 1832-1836, 2017 | 13 | 2017 |
Preprocessing image data I Andreopoulos, A Chadha US Patent 11,445,222, 2022 | 5 | 2022 |
Video Classification With CNNs: Using the Codec as a Spatio-Temporal Activity Sensor C Aaron IEEE Transactions on Circuits and Systems for Video Technology, to Appear, 0 | 5 | |
Region-of-interest retrieval in large image datasets with Voronoi VLAD A Chadha, Y Andreopoulos International Conference on Computer Vision Systems, 218-227, 2015 | 4 | 2015 |
Toward Generalized Psychovisual Preprocessing For Video Encoding A Chadha, MA Anam, M Treder, I Fadeev, Y Andreopoulos SMPTE Motion Imaging Journal 131 (4), 39-44, 2022 | 3 | 2022 |
Escaping the complexity-bitrate-quality barriers of video encoders via deep perceptual optimization A Chadha, R Anam, I Fadeev, V Giotsas, Y Andreopoulos Applications of Digital Image Processing XLIII 11510, 38-52, 2020 | 2 | 2020 |
Processing image data A Chadha, I Andreopoulos, M Treder US Patent App. 17/647,157, 2023 | 1 | 2023 |
Preprocessing image data I Andreopoulos, A Chadha US Patent 11,223,833, 2022 | 1 | 2022 |
From pixels to spikes: Efficient multimodal learning in the presence of domain shift A Chadha UCL (University College London), 2019 | 1 | 2019 |
DEEP-LEARNING BASED PRECODING TECHNIQUES FOR NEXT-GENERATION VIDEO COMPRESSION A Chadha, E Bourtsoulatze, I Fadeev, V Giotsas, S Grce, Y Andreopoulos, ... | 1 | 2019 |
Processing image data A Bhunia, MUK Khan, A Chadha, I Andreopoulos US Patent App. 18/104,245, 2024 | | 2024 |