Minimal crystallographic descriptors of sorption properties in hypothetical MOFs and role in sequential learning optimization G Trezza, L Bergamasco, M Fasano, E Chiavazzo npj Computational Materials 8 (1), 1-14, 2022 | 21 | 2022 |
Multi-Variable Multi-Metric Optimization of Self-Assembled Photocatalytic CO2 Reduction Performance Using Machine Learning Algorithms SA Bonke, G Trezza, L Bergamasco, H Song, S Rodríguez-Jiménez, ... Journal of the American Chemical Society, 2024 | 8 | 2024 |
Leveraging composition-based energy material descriptors for machine learning models G Trezza, E Chiavazzo Materials Today Communications, 106579, 2023 | 7* | 2023 |
Learning Effective Good Variables from Physical Data G Barletta, G Trezza, E Chiavazzo Machine Learning and Knowledge Extraction 6 (3), 1597-1618, 2024 | 2 | 2024 |
Energy-GNoME: A Living Database of Selected Materials for Energy Applications P De Angelis, G Trezza, G Barletta, P Asinari, E Chiavazzo arXiv preprint arXiv:2411.10125, 2024 | | 2024 |
Artificial Intelligence based screening of materials for energy storage applications G Trezza Politecnico di Torino, 2024 | | 2024 |
Optimizing MOF properties for seasonal heat storage: a machine learning approach G Trezza, L Bergamasco, M Fasano, E Chiavazzo Journal of Physics: Conference Series 2766 (1), 012219, 2024 | | 2024 |
Classification-Based Detection and Quantification of Cross-Domain Data Bias in Materials Discovery G Trezza, E Chiavazzo Journal of Chemical Information and Modeling, 2024 | | 2024 |