Global sensitivity analysis with dependence measures S Da Veiga Journal of Statistical Computation and Simulation 85 (7), 1283-1305, 2015 | 224 | 2015 |
Global sensitivity analysis of stochastic computer models with joint metamodels A Marrel, B Iooss, S Da Veiga, M Ribatet Statistics and Computing 22, 833-847, 2012 | 173 | 2012 |
Local polynomial estimation for sensitivity analysis on models with correlated inputs S Da Veiga, F Wahl, F Gamboa Technometrics 51 (4), 452-463, 2009 | 172 | 2009 |
Sensitivity: global sensitivity analysis of model outputs B Iooss, A Janon, G Pujol, B Broto, K Boumhaout, S Da Veiga, T Delage, ... R package version 1 (0), 2021 | 128 | 2021 |
Gaussian process modeling with inequality constraints S Da Veiga, A Marrel Annales de la Faculté des sciences de Toulouse: Mathématiques 21 (3), 529-555, 2012 | 117 | 2012 |
Basics and trends in sensitivity analysis: Theory and practice in R S Da Veiga, F Gamboa, B Iooss, C Prieur Society for Industrial and Applied Mathematics, 2021 | 106 | 2021 |
Interpretable random forests via rule extraction C Bénard, G Biau, S Da Veiga, E Scornet International Conference on Artificial Intelligence and Statistics, 937-945, 2021 | 97 | 2021 |
Mean decrease accuracy for random forests: inconsistency, and a practical solution via the Sobol-MDA C Bénard, S Da Veiga, E Scornet Biometrika 109 (4), 881-900, 2022 | 84 | 2022 |
Sirus: Stable and interpretable rule set for classification C Bénard, G Biau, S Da Veiga, E Scornet | 63 | 2021 |
Global sensitivity analysis for optimization with variable selection A Spagnol, RL Riche, SD Veiga SIAM/ASA Journal on uncertainty quantification 7 (2), 417-443, 2019 | 57 | 2019 |
Sensitivity: global sensitivity analysis of model outputs G Pujol, B Iooss, A Janon, K Boumhaout, S Da Veiga, J Fruth, L Gilquin, ... R package version 1 (0), 2017 | 56 | 2017 |
Appropriate formulation of the objective function for the history matching of seismic attributes E Tillier, S Da Veiga, R Derfoul Computers & Geosciences 51, 64-73, 2013 | 48 | 2013 |
Efficient estimation of sensitivity indices S Da Veiga, F Gamboa Journal of Nonparametric Statistics 25 (3), 573-595, 2013 | 46 | 2013 |
SHAFF: Fast and consistent SHApley eFfect estimates via random Forests C Bénard, G Biau, S Da Veiga, E Scornet International Conference on Artificial Intelligence and Statistics, 5563-5582, 2022 | 38 | 2022 |
Kernel-based ANOVA decomposition and Shapley effects--Application to global sensitivity analysis S Da Veiga arXiv preprint arXiv:2101.05487, 2021 | 38 | 2021 |
Gaussian process regression with linear inequality constraints S Da Veiga, A Marrel Reliability Engineering & System Safety 195, 106732, 2020 | 37 | 2020 |
sensitivity: Global Sensitivity Analysis of Model Outputs, R package version 1.27. 0 B Iooss, S Da Veiga, A Janon, G Pujol | 36 | 2021 |
Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data M Le Ravalec-Dupin, S Da Veiga Computers & geosciences 37 (9), 1400-1412, 2011 | 31 | 2011 |
Advanced integrated workflows for incorporating both production and 4D seismic-related data into reservoir models M Le Ravalec, E Tillier, S Da Veiga, G Enchéry, V Gervais Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles 67 (2), 207-220, 2012 | 27 | 2012 |
Method of developing a petroleum reservoir from history matching of production data and seismic data R Derfoul, E Tillier, S Da Veiga US Patent 8,862,450, 2014 | 21 | 2014 |