Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs G Bai, U Koley, S Mishra, R Molinaro arXiv preprint arXiv:2104.05584, 2021 | 46 | 2021 |
A new approach to the analysis of parametric finite element approximations to mean curvature flow G Bai, B Li Foundations of Computational Mathematics 24 (5), 1673-1737, 2024 | 8 | 2024 |
Erratum: Convergence of Dziuk’s semidiscrete finite element method for mean curvature flow of closed surfaces with high-order finite elements G Bai, B Li SIAM Journal on Numerical Analysis 61 (3), 1609-1612, 2023 | 8 | 2023 |
A constructive low-regularity integrator for the 1d cubic nonlinear Schrödinger equation under the Neumann boundary condition G Bai, B Li, Y Wu IMA J. Numer. Anal, 2022 | 8 | 2022 |
A constructive low-regularity integrator for the one-dimensional cubic nonlinear Schrödinger equation under Neumann boundary condition G Bai, B Li, Y Wu IMA Journal of Numerical Analysis 43 (6), 3243-3281, 2023 | 6 | 2023 |
High-Order Mass-and Energy-Conserving Methods for the Nonlinear Schrödinger Equation G Bai, J Hu, B Li SIAM Journal on Scientific Computing 46 (2), A1026-A1046, 2024 | 5 | 2024 |
Weak maximum principle of finite element methods for parabolic equations in polygonal domains G Bai, D Leykekhman, B Li Numerische Mathematik, 1-46, 2025 | 1 | 2025 |
A convergent evolving finite element method with artificial tangential motion for surface evolution under a prescribed velocity field G Bai, J Hu, B Li SIAM Journal on Numerical Analysis 62 (5), 2172-2195, 2024 | 1 | 2024 |
Maximal regularity of evolving FEMs for parabolic equations on an evolving surface G Bai, B Kovács, B Li arXiv preprint arXiv:2408.14096, 2024 | | 2024 |
Convergence of a stabilized parametric finite element method of the Barrett–Garcke–Nürnberg type for curve shortening flow G Bai, B Li Mathematics of Computation, 2024 | | 2024 |