Follow
Sertan Girgin
Sertan Girgin
Google DeepMind
Verified email at google.com
Title
Cited by
Cited by
Year
Gemini: a family of highly capable multimodal models
G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ...
arXiv preprint arXiv:2312.11805, 2023
24532023
Gemma: Open models based on gemini research and technology
G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ...
arXiv preprint arXiv:2403.08295, 2024
9022024
Gemma 2: Improving open language models at a practical size
G Team, M Riviere, S Pathak, PG Sessa, C Hardin, S Bhupatiraju, ...
arXiv preprint arXiv:2408.00118, 2024
2992024
Brax--a differentiable physics engine for large scale rigid body simulation
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
arXiv preprint arXiv:2106.13281, 2021
2752021
Acme: A research framework for distributed reinforcement learning
MW Hoffman, B Shahriari, J Aslanides, G Barth-Maron, N Momchev, ...
arXiv preprint arXiv:2006.00979, 2020
2712020
What matters in on-policy reinforcement learning? a large-scale empirical study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
arXiv preprint arXiv:2006.05990, 2020
2582020
What matters for on-policy deep actor-critic methods? a large-scale study
M Andrychowicz, A Raichuk, P Stańczyk, M Orsini, S Girgin, R Marinier, ...
International conference on learning representations, 2021
2072021
Speak, read and prompt: High-fidelity text-to-speech with minimal supervision
E Kharitonov, D Vincent, Z Borsos, R Marinier, S Girgin, O Pietquin, ...
Transactions of the Association for Computational Linguistics 11, 1703-1718, 2023
1782023
Swarm robotics
E Şahin, S Girgin, L Bayindir, AE Turgut
Swarm intelligence: introduction and applications, 87-100, 2008
1332008
Nash learning from human feedback
R Munos, M Valko, D Calandriello, MG Azar, M Rowland, ZD Guo, Y Tang, ...
arXiv preprint arXiv:2312.00886, 2023
882023
What matters for adversarial imitation learning?
M Orsini, A Raichuk, L Hussenot, D Vincent, R Dadashi, S Girgin, M Geist, ...
Advances in Neural Information Processing Systems 34, 14656-14668, 2021
822021
Factually consistent summarization via reinforcement learning with textual entailment feedback
P Roit, J Ferret, L Shani, R Aharoni, G Cideron, R Dadashi, M Geist, ...
arXiv preprint arXiv:2306.00186, 2023
732023
Brax-a differentiable physics engine for large scale rigid body simulation, 2021
CD Freeman, E Frey, A Raichuk, S Girgin, I Mordatch, O Bachem
URL http://github. com/google/brax 6, 2021
732021
Scalable deep reinforcement learning algorithms for mean field games
M Laurière, S Perrin, S Girgin, P Muller, A Jain, T Cabannes, G Piliouras, ...
International Conference on Machine Learning, 12078-12095, 2022
572022
What matters in on-policy reinforcement learning
M Andrychowicz, A Raichuk, P Stanczyk, M Orsini, S Girgin, R Marinier, ...
A large-scale empirical study. CoRR, abs/2006.05990 3, 2020
372020
Continuous control with action quantization from demonstrations
R Dadashi, L Hussenot, D Vincent, S Girgin, A Raichuk, M Geist, ...
arXiv preprint arXiv:2110.10149, 2021
362021
Improving reinforcement learning by using sequence trees
S Girgin, F Polat, R Alhajj
Machine learning 81, 283-331, 2010
362010
Feature discovery in reinforcement learning using genetic programming
S Girgin, P Preux
European conference on genetic programming, 218-229, 2008
322008
A novel report generation approach for medical applications: the SISDS methodology and its applications
K Kuru, S Girgin, K Arda, U Bozlar
International journal of medical informatics 82 (5), 435-447, 2013
312013
Solving N-player dynamic routing games with congestion: a mean field approach
T Cabannes, M Lauriere, J Perolat, R Marinier, S Girgin, S Perrin, ...
arXiv preprint arXiv:2110.11943, 2021
252021
The system can't perform the operation now. Try again later.
Articles 1–20