Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition KM Collins, A Bode, RW Fernandez, JE Tanis, JC Brewer, MS Creamer, ... Elife 5, e21126, 2016 | 128 | 2016 |
Visual control of walking speed in Drosophila MS Creamer, O Mano, DA Clark Neuron 100 (6), 1460-1473. e6, 2018 | 79 | 2018 |
Direct measurement of correlation responses in Drosophila elementary motion detectors reveals fast timescale tuning E Salazar-Gatzimas, J Chen, MS Creamer, O Mano, HB Mandel, ... Neuron 92 (1), 227-239, 2016 | 68 | 2016 |
Specification, annotation, visualization and simulation of a large rule-based model for ERBB receptor signaling MS Creamer, EC Stites, M Aziz, JA Cahill, CW Tan, ME Berens, H Han, ... BMC systems biology 6, 1-14, 2012 | 49 | 2012 |
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors BA Badwan, MS Creamer, JA Zavatone-Veth, DA Clark Nature neuroscience 22 (8), 1318-1326, 2019 | 39 | 2019 |
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training X Yu, MS Creamer, F Randi, AK Sharma, SW Linderman, AM Leifer Elife 10, e66410, 2021 | 36 | 2021 |
A flexible geometry for panoramic visual and optogenetic stimulation during behavior and physiology MS Creamer, O Mano, R Tanaka, DA Clark Journal of neuroscience methods 323, 48-55, 2019 | 32 | 2019 |
Use of mechanistic models to integrate and analyze multiple proteomic datasets EC Stites, M Aziz, MS Creamer, DD Von Hoff, RG Posner, WS Hlavacek Biophysical journal 108 (7), 1819-1829, 2015 | 30 | 2015 |
Drosophila Sidekick is required in developing photoreceptors to enable visual motion detection S Astigarraga, J Douthit, D Tarnogorska, MS Creamer, O Mano, DA Clark, ... Development 145 (3), dev158246, 2018 | 26 | 2018 |
Predicting individual neuron responses with anatomically constrained task optimization O Mano, MS Creamer, BA Badwan, DA Clark Current Biology 31 (18), 4062-4075. e4, 2021 | 20 | 2021 |
Correcting motion induced fluorescence artifacts in two-channel neural imaging MS Creamer, KS Chen, AM Leifer, JW Pillow PLoS computational biology 18 (9), e1010421, 2022 | 16 | 2022 |
Using slow frame rate imaging to extract fast receptive fields O Mano, MS Creamer, CA Matulis, E Salazar-Gatzimas, J Chen, ... Nature communications 10 (1), 4979, 2019 | 11 | 2019 |
Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation KB Buck, AW Schaefer, VT Schoonderwoert, MS Creamer, ER Dufresne, ... Molecular biology of the cell 28 (1), 98-110, 2017 | 10 | 2017 |
Fast deep learning correspondence for neuron tracking and identification in C. elegans using synthetic training X Yu, MS Creamer, F Randi, AK Sharma, SW Linderman, AM Leifer arXiv preprint arXiv:2101.08211, 2021 | 6 | 2021 |
Long-timescale anti-directional rotation in Drosophila optomotor behavior O Mano, M Choi, R Tanaka, MS Creamer, NCB Matos, JW Shomar, ... Elife 12, e86076, 2023 | 4 | 2023 |
Bridging the gap between the connectome and whole-brain activity in C. elegans MS Creamer, AM Leifer, JW Pillow bioRxiv, 2024.09. 22.614271, 2024 | 2 | 2024 |
Measuring the amount of computation done in C. elegans brain dynamics J Li, M Creamer, A Leifer, D Wolpert Bulletin of the American Physical Society, 2024 | | 2024 |
Automatic Neuron Correspondence Prediction In C.elegans With Deep Learning X Yu, M Creamer, A Leifer Bulletin of the American Physical Society 66, 2021 | | 2021 |
Automatic Neuron Correspondence Prediction In C. elegansWith Deep Learning X Yu, M Creamer, A Leifer APS March Meeting Abstracts 2021, S12. 013, 2021 | | 2021 |
Algorithms for Motion Detection and Visual Motor Control in Drosophila MS Creamer Yale University, 2019 | | 2019 |