Follow
Matthew S Creamer
Matthew S Creamer
Verified email at princeton.edu
Title
Cited by
Cited by
Year
Activity of the C. elegans egg-laying behavior circuit is controlled by competing activation and feedback inhibition
KM Collins, A Bode, RW Fernandez, JE Tanis, JC Brewer, MS Creamer, ...
Elife 5, e21126, 2016
1282016
Visual control of walking speed in Drosophila
MS Creamer, O Mano, DA Clark
Neuron 100 (6), 1460-1473. e6, 2018
792018
Direct measurement of correlation responses in Drosophila elementary motion detectors reveals fast timescale tuning
E Salazar-Gatzimas, J Chen, MS Creamer, O Mano, HB Mandel, ...
Neuron 92 (1), 227-239, 2016
682016
Specification, annotation, visualization and simulation of a large rule-based model for ERBB receptor signaling
MS Creamer, EC Stites, M Aziz, JA Cahill, CW Tan, ME Berens, H Han, ...
BMC systems biology 6, 1-14, 2012
492012
Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors
BA Badwan, MS Creamer, JA Zavatone-Veth, DA Clark
Nature neuroscience 22 (8), 1318-1326, 2019
392019
Fast deep neural correspondence for tracking and identifying neurons in C. elegans using semi-synthetic training
X Yu, MS Creamer, F Randi, AK Sharma, SW Linderman, AM Leifer
Elife 10, e66410, 2021
362021
A flexible geometry for panoramic visual and optogenetic stimulation during behavior and physiology
MS Creamer, O Mano, R Tanaka, DA Clark
Journal of neuroscience methods 323, 48-55, 2019
322019
Use of mechanistic models to integrate and analyze multiple proteomic datasets
EC Stites, M Aziz, MS Creamer, DD Von Hoff, RG Posner, WS Hlavacek
Biophysical journal 108 (7), 1819-1829, 2015
302015
Drosophila Sidekick is required in developing photoreceptors to enable visual motion detection
S Astigarraga, J Douthit, D Tarnogorska, MS Creamer, O Mano, DA Clark, ...
Development 145 (3), dev158246, 2018
262018
Predicting individual neuron responses with anatomically constrained task optimization
O Mano, MS Creamer, BA Badwan, DA Clark
Current Biology 31 (18), 4062-4075. e4, 2021
202021
Correcting motion induced fluorescence artifacts in two-channel neural imaging
MS Creamer, KS Chen, AM Leifer, JW Pillow
PLoS computational biology 18 (9), e1010421, 2022
162022
Using slow frame rate imaging to extract fast receptive fields
O Mano, MS Creamer, CA Matulis, E Salazar-Gatzimas, J Chen, ...
Nature communications 10 (1), 4979, 2019
112019
Local Arp2/3-dependent actin assembly modulates applied traction force during apCAM adhesion site maturation
KB Buck, AW Schaefer, VT Schoonderwoert, MS Creamer, ER Dufresne, ...
Molecular biology of the cell 28 (1), 98-110, 2017
102017
Fast deep learning correspondence for neuron tracking and identification in C. elegans using synthetic training
X Yu, MS Creamer, F Randi, AK Sharma, SW Linderman, AM Leifer
arXiv preprint arXiv:2101.08211, 2021
62021
Long-timescale anti-directional rotation in Drosophila optomotor behavior
O Mano, M Choi, R Tanaka, MS Creamer, NCB Matos, JW Shomar, ...
Elife 12, e86076, 2023
42023
Bridging the gap between the connectome and whole-brain activity in C. elegans
MS Creamer, AM Leifer, JW Pillow
bioRxiv, 2024.09. 22.614271, 2024
22024
Measuring the amount of computation done in C. elegans brain dynamics
J Li, M Creamer, A Leifer, D Wolpert
Bulletin of the American Physical Society, 2024
2024
Automatic Neuron Correspondence Prediction In C.elegans With Deep Learning
X Yu, M Creamer, A Leifer
Bulletin of the American Physical Society 66, 2021
2021
Automatic Neuron Correspondence Prediction In C. elegansWith Deep Learning
X Yu, M Creamer, A Leifer
APS March Meeting Abstracts 2021, S12. 013, 2021
2021
Algorithms for Motion Detection and Visual Motor Control in Drosophila
MS Creamer
Yale University, 2019
2019
The system can't perform the operation now. Try again later.
Articles 1–20