Follow
Janosh Riebesell
Janosh Riebesell
Radical AI, NYC. prev. Lawrence Berkeley Lab, University of Cambridge
Verified email at lbl.gov - Homepage
Title
Cited by
Cited by
Year
CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling
B Deng, P Zhong, KJ Jun, J Riebesell, K Han, CJ Bartel, G Ceder
Nature Machine Intelligence 5 (9), 1031-1041, 2023
3002023
A foundation model for atomistic materials chemistry
I Batatia, P Benner, Y Chiang, AM Elena, DP Kovács, J Riebesell, ...
arXiv preprint arXiv:2401.00096, 2023
1512023
Matbench Discovery--An evaluation framework for machine learning crystal stability prediction
J Riebesell, REA Goodall, A Jain, P Benner, KA Persson, AA Lee
arXiv preprint arXiv:2308.14920, 2023
292023
A foundation model for atomistic materials chemistry, 2024
I Batatia, P Benner, Y Chiang, AM Elena, DP Kovács, J Riebesell, ...
arXiv preprint arXiv:2401.00096, 0
18
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning
B Deng, Y Choi, P Zhong, J Riebesell, S Anand, Z Li, KJ Jun, KA Persson, ...
arXiv preprint arXiv:2405.07105, 2024
142024
Jobflow: Computational workflows made simple
AS Rosen, M Gallant, J George, J Riebesell, H Sahasrabuddhe, JX Shen, ...
Journal of Open Source Software 9 (93), 5995, 2024
142024
A foundation model for atomistic materials chemistry, arXiv, 2024
I Batatia, P Benner, Y Chiang, AM Elena, DP Kovács, J Riebesell, ...
arXiv preprint arXiv:2401.00096 10, 2024
102024
Developments and applications of the OPTIMADE API for materials discovery, design, and data exchange
ML Evans, J Bergsma, A Merkys, CW Andersen, OB Andersson, D Beltrán, ...
Digital Discovery 3 (8), 1509-1533, 2024
92024
LLaMP: Large language model made powerful for high-fidelity materials knowledge retrieval and distillation
Y Chiang, E Hsieh, CH Chou, J Riebesell
arXiv preprint arXiv:2401.17244, 2024
82024
A foundation model for atomistic materials chemistry, arXiv
I Batatia, P Benner, Y Chiang, AM Elena, DP Kovács, J Riebesell, ...
arXiv preprint arXiv:2401.00096 10, 2024
62024
Crystal Toolkit: A Web App Framework to Improve Usability and Accessibility of Materials Science Research Algorithms
M Horton, JX Shen, J Burns, O Cohen, F Chabbey, AM Ganose, R Guha, ...
arXiv preprint arXiv:2302.06147, 2023
52023
Alpha A Lee. Matbench discovery–an evaluation framework for machine learning crystal stability prediction
J Riebesell, REA Goodall, A Jain, P Benner, KA Persson
arXiv preprint arXiv:2308.14920, 2023
52023
Overcoming systematic softening in universal machine learning interatomic potentials by fine-tuning, 2024
B Deng, Y Choi, P Zhong, J Riebesell, S Anand, Z Li, K Jun, KA Persson, ...
URL https://arxiv. org/abs/2405.07105.(cited on page 2), 0
5
Pushing the Pareto front of band gap and permittivity: ML-guided search for dielectric materials
J Riebesell, T Surta, R Goodall, M Gaultois, AA Lee
arXiv preprint arXiv:2401.05848, 2024
32024
Discovery of high-performance dielectric materials with machine-learning-guided search
J Riebesell, TW Surta, REA Goodall, MW Gaultois
Cell Reports Physical Science 5 (10), 2024
12024
Systematic softening in universal machine learning interatomic potentials
B Deng, Y Choi, P Zhong, J Riebesell, S Anand, Z Li, KJ Jun, KA Persson, ...
npj Computational Materials 11 (1), 1-9, 2025
2025
Atomate2: Modular workflows for materials science
A Ganose, H Sahasrabuddhe, M Asta, K Beck, T Biswas, A Bonkowski, ...
ChemRxiv, 1-66, 2025
2025
Foundational Machine Learning Interatomic Potential to Study Li-Ion Battery Cathode Phase Transformation with Charge Transfer
B Deng, P Zhong, KJ Jun, J Riebesell, K Han, CJ Bartel, G Ceder
Electrochemical Society Meeting Abstracts prime2024, 333-333, 2024
2024
Towards Machine Learning Foundation Models for Materials Chemistry
J Riebesell
2024
Best of Atomistic Machine Learning
J Wasmer, J Riebesell, M Evans, B Blaiszik
Quanten-Theorie der Materialien, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20