Generalized linear mixed models for longitudinal data AM Gad, RB El Kholy International Journal of Probability and Statistics 1 (3), 41-47, 2012 | 41 | 2012 |
Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm AM Gad, AS Ahmed Computational Statistics & Data Analysis 50 (10), 2702-2714, 2006 | 41 | 2006 |
The Burr XII-Burr XII distribution: mathematical properties and characterizations AM Gad, GG Hamedani, SM Salehabadi, HM Yousof Pakistan Journal of Statistics, 2019 | 36 | 2019 |
Regression Estimation in the Presence of Outliers: A Comparative Study AM Gad, ME Qura International Journal of Probability and Statistics 5 (3), 65-72, 2016 | 24 | 2016 |
A shared parameter model for longitudinal data with missing values AM Gad, NMM Darwish American journal of applied Mathematics and Statistics 1 (2), 30-35, 2013 | 17 | 2013 |
Arthroscopic assisted reduction and internal fixation of tibial plateau fractures SHM Zawam, AM Gad Open Access Macedonian Journal of Medical Sciences 7 (7), 1133, 2019 | 13 | 2019 |
Sensitivity analysis of longitudinal data with intermittent missing values AM Gad, AS Ahmed Statistical Methodology 4 (2), 217-226, 2007 | 11 | 2007 |
A selection model for longitudinal data with non-ignorable non-monotone missing values AM Gad Journal of Data Science 9 (171-180), 2011 | 10 | 2011 |
Linear mixed models for longitudinal data with nonrandom dropouts AM Gad, NA Youssif Journal of Data Science 4 (4), 447-460, 2006 | 10 | 2006 |
A new change-point rank tests AES Abd-Rabou, AM Gad Journal of Data Science 5 (3), 379-392, 2007 | 8 | 2007 |
A stochastic variant of the EM algorithm to fit mixed (discrete and continuous) longitudinal data with nonignorable missingness ASA Yaseen, AM Gad Communications in Statistics-Theory and Methods 49 (18), 4446-4467, 2020 | 6 | 2020 |
Fitting Multivariate Linear Mixed Model for Multiple Outcomes Longitudinal Data with Non-ignorable Dropout AM Gad, NI El-Zayat Int J Prob Stat 7 (4), 97-105, 2018 | 6 | 2018 |
Generalized linear mixed models for longitudinal data with missing values: a monte carlo EM approach MY Sabry, RB Kholy, AM Gad International Journal of Probability and Statistics 5 (3), 82-88, 2016 | 5 | 2016 |
Maximum Likelihood Approach for Longitudinal Models with Nonignorable Missing Data Mechanism Using Fractional Imputation ASA Yaseen, AM Gad, AS Ahmed American Journal of Applied Mathematics and Statistics 4 (3), 59-66, 2016 | 4 | 2016 |
Bayesian estimation and inference for the generalized partial linear model HM Yousof, AM Gad International Journal of Probability and Statistics 4 (2), 51-64, 2015 | 4 | 2015 |
A multiple imputation approach to evaluate the accuracy of diagnostic tests in presence of missing values AM Gad, AAM Ali, RH Mohamed Commun. Math. Biol. Neurosci. 2022, Article ID 21, 2022 | 3 | 2022 |
An adaptive linear regression approach for modeling heavy-tailed longitudinal data AM Gad, WIM Ibrahim Communications in Statistics-Simulation and Computation 49 (5), 1181-1197, 2020 | 3 | 2020 |
Bayesian Estimation of Latent Class Model for Survey Data Subject to Item Nonresponse S Zakaria, MS Hafez, AM Gad Pakistan Journal of Statistics and Operation Research, 303-318, 2019 | 2 | 2019 |
Modeling Longitudinal Count Data with Missing Values: A Comparative Study SS Fatma El Zahraa, AM Gad, AM Mohamed Academic Journal of Applied Mathematical Sciences 2 (3), 19-26, 2016 | 2 | 2016 |
Fitting longitudinal data with missing values in the response and covariates NM Darwish, AM Gad, RM Hamid Advances and Applications in Statistics 64 (2), 127-142, 2020 | 1 | 2020 |