Follow
Frederik Wenkel
Frederik Wenkel
PhD student of applied mathematics, Mila, Université de Montréal
Verified email at umontreal.ca
Title
Cited by
Cited by
Year
Scattering gcn: Overcoming oversmoothness in graph convolutional networks
Y Min, F Wenkel, G Wolf
Advances in neural information processing systems 33, 14498-14508, 2020
1342020
Towards foundational models for molecular learning on large-scale multi-task datasets
D Beaini, S Huang, JA Cunha, Z Li, G Moisescu-Pareja, O Dymov, ...
arXiv preprint arXiv:2310.04292, 2023
252023
Can hybrid geometric scattering networks help solve the maximum clique problem?
Y Min, F Wenkel, M Perlmutter, G Wolf
Advances in Neural Information Processing Systems 35, 22713-22724, 2022
212022
Taxonomy of benchmarks in graph representation learning
R Liu, S Cantürk, F Wenkel, S McGuire, X Wang, A Little, L O’Bray, ...
Learning on Graphs Conference, 6: 1-6: 25, 2022
172022
Overcoming oversmoothness in graph convolutional networks via hybrid scattering networks
F Wenkel, Y Min, M Hirn, M Perlmutter, G Wolf
arXiv preprint arXiv:2201.08932, 2022
162022
Geometric scattering attention networks
Y Min, F Wenkel, G Wolf
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
142021
Yimeng Min, Matthew Hirn, Michael Perlmutter, and Guy Wolf. Overcoming oversmoothness in graph convolutional networks via hybrid scattering networks
F Wenkel
arXiv preprint arXiv:2201.08932, 2022
132022
Learnable filters for geometric scattering modules
A Tong, F Wenkel, D Bhaskar, K Macdonald, J Grady, M Perlmutter, ...
IEEE Transactions on Signal Processing, 2024
112024
Data-driven learning of geometric scattering networks
A Tong, F Wenkel, K MacDonald, S Krishnaswamy, G Wolf
arXiv preprint arXiv:2010.02415, 2020
72020
On the Scalability of GNNs for Molecular Graphs
M Sypetkowski, F Wenkel, F Poursafaei, N Dickson, K Suri, P Fradkin, ...
arXiv preprint arXiv:2404.11568, 2024
52024
Inferring dynamic regulatory interaction graphs from time series data with perturbations
D Bhaskar, DS Magruder, M Morales, E De Brouwer, A Venkat, F Wenkel, ...
Learning on Graphs Conference, 22: 1-22: 21, 2024
42024
Towards a General GNN Framework for Combinatorial Optimization
F Wenkel, S Cantürk, M Perlmutter, G Wolf
arXiv preprint arXiv:2405.20543, 2024
22024
Pretrained language models to solve graph tasks in natural language
F Wenkel, G Wolf, B Knyazev
ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative …, 2023
22023
Towards a taxonomy of graph learning datasets
R Liu, S Cantürk, F Wenkel, D Sandfelder, D Kreuzer, A Little, S McGuire, ...
arXiv preprint arXiv:2110.14809, 2021
22021
How Molecules Impact Cells: Unlocking Contrastive PhenoMolecular Retrieval
P Fradkin, P Azadi, K Suri, F Wenkel, A Bashashati, M Sypetkowski, ...
arXiv preprint arXiv:2409.08302, 2024
2024
Towards a General Recipe for Combinatorial Optimization with Multi-Filter GNNs
F Wenkel, S Cantürk, S Horoi, M Perlmutter, G Wolf
The Third Learning on Graphs Conference, 0
Molphenix: A Multimodal Foundation Model for PhenoMolecular Retrieval
P Fradkin, PA Moghadam, K Suri, F Wenkel, M Sypetkowski, D Beaini
Neurips 2024 Workshop Foundation Models for Science: Progress, Opportunities …, 0
Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks–Supplement
Y Min, F Wenkel, G Wolf
Scattering GCN: Overcoming Oversmoothness in Graph Conv. Networks
Y Min, F Wenkel, G Wolf
TUM Data Innovation Lab
S Kathuria, J Zhang, F Wenkel, P Kim, CML Vuaille
The system can't perform the operation now. Try again later.
Articles 1–20