Digital twin: Values, challenges and enablers from a modeling perspective A Rasheed, O San, T Kvamsdal IEEE access 8, 21980-22012, 2020 | 1616 | 2020 |
CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning D Robinson, F Haldi, P Leroux, D Perez, A Rasheed, U Wilke Proceedings of the Eleventh International IBPSA Conference, 1083-1090, 2009 | 502 | 2009 |
Subgrid modelling for two-dimensional turbulence using neural networks R Maulik, O San, A Rasheed, P Vedula Journal of Fluid Mechanics 858, 122-144, 2019 | 348 | 2019 |
A deep learning enabler for nonintrusive reduced order modeling of fluid flows S Pawar, SM Rahman, H Vaddireddy, O San, A Rasheed, P Vedula Physics of Fluids 31 (8), 2019 | 184 | 2019 |
On closures for reduced order models—A spectrum of first-principle to machine-learned avenues SE Ahmed, S Pawar, O San, A Rasheed, T Iliescu, BR Noack Physics of Fluids 33 (9), 2021 | 148 | 2021 |
Physics guided machine learning using simplified theories S Pawar, O San, B Aksoylu, A Rasheed, T Kvamsdal Physics of Fluids 33 (1), 2021 | 144 | 2021 |
Digital twin: Values, challenges and enablers A Rasheed, O San, T Kvamsdal arXiv preprint arXiv:1910.01719, 2019 | 140 | 2019 |
Feature engineering and symbolic regression methods for detecting hidden physics from sparse sensor observation data H Vaddireddy, A Rasheed, AE Staples, O San Physics of Fluids 32 (1), 2020 | 108 | 2020 |
Data-driven deconvolution for large eddy simulations of Kraichnan turbulence R Maulik, O San, A Rasheed, P Vedula Physics of Fluids 30 (12), 2018 | 108 | 2018 |
COLREG-compliant collision avoidance for unmanned surface vehicle using deep reinforcement learning E Meyer, A Heiberg, A Rasheed, O San Ieee Access 8, 165344-165364, 2020 | 99 | 2020 |
Data-driven recovery of hidden physics in reduced order modeling of fluid flows S Pawar, SE Ahmed, O San, A Rasheed Physics of Fluids 32 (3), 2020 | 99 | 2020 |
Nonintrusive reduced order modeling framework for quasigeostrophic turbulence SM Rahman, S Pawar, O San, A Rasheed, T Iliescu Physical Review E 100 (5), 053306, 2019 | 95 | 2019 |
Taming an autonomous surface vehicle for path following and collision avoidance using deep reinforcement learning E Meyer, H Robinson, A Rasheed, O San IEEE Access 8, 41466-41481, 2020 | 92 | 2020 |
Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine MS Siddiqui, A Rasheed, T Kvamsdal, M Tabib Energy Procedia 80, 312-320, 2015 | 82 | 2015 |
Vortices in type-ll superconductors VV Shmidt, GS Mkrtchyan Soviet Physics Uspekhi 17 (2), 170, 1974 | 78 | 1974 |
Loss of the mono-ADP-ribosyltransferase, Tiparp, increases sensitivity to dioxin-induced steatohepatitis and lethality S Ahmed, D Bott, A Gomez, L Tamblyn, A Rasheed, T Cho, L MacPherson, ... Journal of Biological Chemistry 290 (27), 16824-16840, 2015 | 69 | 2015 |
Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution O San, A Rasheed, T Kvamsdal GAMM‐Mitteilungen 44 (2), e202100007, 2021 | 67 | 2021 |
The late-time development of the Richtmyer–Meshkov instability JK Prasad, A Rasheed, S Kumar, B Sturtevant Physics of Fluids 12 (8), 2108-2115, 2000 | 66 | 2000 |
Physics guided neural networks for modelling of non-linear dynamics H Robinson, S Pawar, A Rasheed, O San Neural Networks 154, 333-345, 2022 | 65 | 2022 |
A priori analysis on deep learning of subgrid-scale parameterizations for Kraichnan turbulence S Pawar, O San, A Rasheed, P Vedula Theoretical and Computational Fluid Dynamics 34 (4), 429-455, 2020 | 62 | 2020 |