Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators L Lu, P Jin, G Pang, Z Zhang, GE Karniadakis Nature machine intelligence 3 (3), 218-229, 2021 | 2745* | 2021 |
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems P Jin, Z Zhang, A Zhu, Y Tang, GE Karniadakis Neural Networks 132, 166-179, 2020 | 228 | 2020 |
MIONet: Learning multiple-input operators via tensor product P Jin, S Meng, L Lu SIAM Journal on Scientific Computing 44 (6), A3490-A3514, 2022 | 149 | 2022 |
Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness P Jin, L Lu, Y Tang, GE Karniadakis Neural Networks 130, 85-99, 2020 | 79 | 2020 |
Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks P Jin, Z Zhang, IG Kevrekidis, GE Karniadakis IEEE Transactions on Neural Networks and Learning Systems 34 (11), 8271-8283, 2022 | 65 | 2022 |
Deep Hamiltonian networks based on symplectic integrators A Zhu, P Jin, Y Tang arXiv preprint arXiv:2004.13830, 2020 | 39 | 2020 |
On numerical integration in neural ordinary differential equations A Zhu, P Jin, B Zhu, Y Tang International Conference on Machine Learning, 27527-27547, 2022 | 32 | 2022 |
Tensor neural network and its numerical integration Y Wang, P Jin, H Xie arXiv preprint arXiv:2207.02754, 2022 | 24 | 2022 |
Inverse modified differential equations for discovery of dynamics A Zhu, P Jin, B Zhu, Y Tang arXiv preprint arXiv:2009.01058, 2020 | 11 | 2020 |
Approximation capabilities of measure-preserving neural networks A Zhu, P Jin, Y Tang Neural Networks 147, 72-80, 2022 | 8 | 2022 |
Unit triangular factorization of the matrix symplectic group P Jin, Y Tang, A Zhu SIAM Journal on Matrix Analysis and Applications 41 (4), 1630-1650, 2020 | 8 | 2020 |
A hybrid iterative method based on MIONet for PDEs: Theory and numerical examples J Hu, P Jin arXiv preprint arXiv:2402.07156, 2024 | 7 | 2024 |
Optimal unit triangular factorization of symplectic matrices P Jin, Z Lin, B Xiao Linear Algebra and its Applications 650, 236-247, 2022 | 7 | 2022 |
Learning solution operators of PDEs defined on varying domains via MIONet S Xiao, P Jin, Y Tang arXiv preprint arXiv:2402.15097, 2024 | 4 | 2024 |
Experimental observation on a low-rank tensor model for eigenvalue problems J Hu, P Jin arXiv preprint arXiv:2302.00538, 2023 | 2 | 2023 |
Shallow ReLU neural networks and finite elements P Jin arXiv preprint arXiv:2403.05809, 2024 | 1 | 2024 |
A deformation-based framework for learning solution mappings of PDEs defined on varying domains S Xiao, P Jin, Y Tang arXiv preprint arXiv:2412.01379, 2024 | | 2024 |
Structure preserving neural networks and applications to optimal control problems Z Zhang, P Jin, GE Karniadakis 2022 Fall Eastern Sectional Meeting, 0 | | |