A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation X Zhao, ZZ Sun, ZP Hao SIAM Journal on Scientific Computing 36 (6), A2865–A2886, 2014 | 291 | 2014 |
Second-order approximations for variable order fractional derivatives: algorithms and applications X Zhao, Z Sun, GE Karniadakis Journal of Computational Physics 293, 184–200, 2015 | 206 | 2015 |
Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation YN Zhang, Z Sun, X Zhao SIAM Journal on Numerical Analysis 50 (3), 1535-1555, 2012 | 187 | 2012 |
Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions J Ren, ZZ Sun, X Zhao Journal of Computational Physics 232 (1), 456-467, 2013 | 152 | 2013 |
A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions X Zhao, Z Sun Journal of Computational Physics 230 (15), 6061-6074, 2011 | 126 | 2011 |
Novel bifurcation results for a delayed fractional-order quaternion-valued neural network C Huang, X Nie, X Zhao, Q Song, Z Tu, M Xiao, J Cao Neural Networks 117, 67-93, 2019 | 91 | 2019 |
Adaptive finite element method for fractional differential equations using hierarchical matrices X Zhao, X Hu, W Cai, GE Karniadakis Computer Methods in Applied Mechanics and Engineering 325, 56-76, 2017 | 91 | 2017 |
Compact Crank–Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium X Zhao, ZZ Sun Journal of Scientific Computing, 747-771, 2015 | 73 | 2015 |
A three level linearized compact difference scheme for the Cahn-Hilliard equation J Li, ZZ Sun, X Zhao Science China Mathematics 55, 805-826, 2012 | 72 | 2012 |
Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient X Zhao, Q Xu Applied Mathematical Modelling 38, 3848–3859, 2014 | 64 | 2014 |
Disparate delays-induced bifurcations in a fractional-order neural network C Huang, X Zhao, X Wang, Z Wang, M Xiao, J Cao Journal of the franklin institute 356 (5), 2825-2846, 2019 | 52 | 2019 |
Finite-time stability of fractional-order complex-valued neural networks with time delays X Ding, J Cao, X Zhao, FE Alsaadi Neural Processing Letters 46, 561-580, 2017 | 50 | 2017 |
The temporal second order difference schemes based on the interpolation approximation for the time multi-term fractional wave equation H Sun, X Zhao, Z Sun Journal of Scientific Computing 78, 467-498, 2019 | 44 | 2019 |
Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: state feedback control and impulsive … X Ding, J Cao, X Zhao, FE Alsaadi Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2017 | 42 | 2017 |
Analysis and synthesis of gradient algorithms based on fractional-order system theory Y Wei, Y Chen, X Zhao, J Cao IEEE Transactions on Systems, Man, and Cybernetics: Systems 53 (3), 1895-1906, 2022 | 28 | 2022 |
Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation S Zhai, D Wang, Z Weng, X Zhao Journal of Scientific Computing 81, 965-989, 2019 | 28 | 2019 |
Superconvergence points of fractional spectral interpolation X Zhao, Z Zhang SIAM J. SCI. COMPUT. 38 (1), A598–A613, 2016 | 26 | 2016 |
Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation Y Zhao, W Bu, X Zhao, Y Tang Journal of Computational Physics 350, 117-135, 2017 | 25 | 2017 |
Data-driven temporal-spatial model for the prediction of AQI in Nanjing X Zhao, M Song, A Liu, Y Wang, T Wang, J Cao Journal of Artificial Intelligence and Soft Computing Research 10 (4), 255-270, 2020 | 19 | 2020 |
Asymptotically compatible energy of variable-step fractional BDF2 formula for time-fractional Cahn-Hilliard model H Liao, N Liu, X Zhao arXiv preprint arXiv:2210.12514, 2022 | 10 | 2022 |