Log-concavity and strong log-concavity: a review A Saumard, JA Wellner Statistics surveys 8, 45, 2014 | 331 | 2014 |
Local differential privacy: Elbow effect in optimal density estimation and adaptation over Besov ellipsoids C Butucea, A Dubois, M Kroll, A Saumard | 56 | 2020 |
Weighted Poincaré inequalities, concentration inequalities and tail bounds related to Stein kernels in dimension one A Saumard | 30 | 2019 |
On optimality of empirical risk minimization in linear aggregation A Saumard | 24 | 2018 |
Efron’s monotonicity property for measures on R2 A Saumard, JA Wellner Journal of Multivariate Analysis 166, 212-224, 2018 | 23 | 2018 |
Slope heuristics and V-Fold model selection in heteroscedastic regression using strongly localized bases F Navarro, A Saumard ESAIM: Probability and Statistics 21, 412-451, 2017 | 21 | 2017 |
K-bMOM: A robust Lloyd-type clustering algorithm based on bootstrap median-of-means C Brunet-Saumard, E Genetay, A Saumard Computational Statistics & Data Analysis 167, 107370, 2022 | 20 | 2022 |
On the isoperimetric constant, covariance inequalities and -Poincaré inequalities in dimension one A Saumard, JA Wellner | 18 | 2019 |
Optimal model selection in heteroscedastic regression using piecewise polynomial functions A Saumard | 17 | 2013 |
Relaxing the Gaussian assumption in shrinkage and SURE in high dimension M Fathi, L Goldstein, G Reinert, A Saumard The Annals of Statistics 50 (5), 2737-2766, 2022 | 12 | 2022 |
Finite sample improvement of Akaike’s information criterion A Saumard, F Navarro IEEE Transactions on Information Theory 67 (10), 6328-6343, 2021 | 9 | 2021 |
The slope heuristics in heteroscedastic regression A Saumard arXiv preprint arXiv:1104.1050, 2011 | 8 | 2011 |
Estimation par minimum de contraste régulier et heuristique de pente en sélection de modèles A Saumard Université Rennes 1, 2010 | 8 | 2010 |
Nonasymptotic quasi-optimality of AIC and the slope heuristics in maximum likelihood estimation of density using histogram models A Saumard | 8 | 2010 |
A concentration inequality for the excess risk in least-squares regression with random design and heteroscedastic noise A Saumard arXiv preprint arXiv:1702.05063, 2017 | 6 | 2017 |
Bi-log-concavity: some properties and some remarks towards a multi-dimensional extension A Saumard | 5 | 2019 |
Convergence in sup-norm of least-squares estimators in regression with random design and nonparametric heteroscedastic noise A Saumard HAL Id: hal-00528539, 2010 | 5 | 2010 |
Nonasymptotic quasi-optimality of AIC and the slope heuristics in maximum likelihood estimation of density using histogram models. hal-00512310 A Saumard Cited on, 227, 2010 | 5 | 2010 |
Phase transitions for support recovery under local differential privacy C Butucea, A Dubois, A Saumard Mathematical Statistics and Learning 6 (1), 1-50, 2023 | 4 | 2023 |
An extremal property of the normal distribution, with a discrete analog E Hillion, O Johnson, A Saumard Statistics & Probability Letters 145, 181-186, 2019 | 4 | 2019 |