Follow
Peter Y. Lu
Title
Cited by
Cited by
Year
Integration of neural network-based symbolic regression in deep learning for scientific discovery
S Kim, PY Lu, S Mukherjee, M Gilbert, L Jing, V Čeperić, M Soljačić
IEEE transactions on neural networks and learning systems 32 (9), 4166-4177, 2020
2012020
Extracting Interpretable Physical Parameters from Spatiotemporal Systems Using Unsupervised Learning
PY Lu, S Kim, M Soljačić
Physical Review X 10 (3), 031056, 2020
762020
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
S Kim, PY Lu, C Loh, J Smith, J Snoek, M Soljačić
Transactions on Machine Learning Research, 2022
38*2022
Discovering sparse interpretable dynamics from partial observations
PY Lu, J Ariño Bernad, M Soljačić
Communications Physics 5 (1), 206, 2022
302022
Energy loss at propagating jamming fronts in granular gas clusters
JC Burton, PY Lu, SR Nagel
Physical Review Letters 111 (18), 188001, 2013
262013
Collision dynamics of particle clusters in a two-dimensional granular gas
JC Burton, PY Lu, SR Nagel
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 88 (6 …, 2013
212013
Deep learning and symbolic regression for discovering parametric equations
M Zhang, S Kim, PY Lu, M Soljačić
IEEE Transactions on Neural Networks and Learning Systems, 2023
192023
Discovering conservation laws using optimal transport and manifold learning
PY Lu, R Dangovski, M Soljačić
Nature Communications 14 (1), 4744, 2023
182023
Training neural operators to preserve invariant measures of chaotic attractors
R Jiang, PY Lu, E Orlova, R Willett
Advances in Neural Information Processing Systems 36, 2023
152023
Discovering dynamical parameters by interpreting echo state networks
O Alao, PY Lu, M Soljacic
NeurIPS 2021 AI for Science Workshop, 2021
122021
Extraordinary optical transmission inside a waveguide: spatial mode dependence
KS Reichel, PY Lu, S Backus, R Mendis, DM Mittleman
Optics Express 24 (25), 28221-28227, 2016
122016
Q-flow: generative modeling for differential equations of open quantum dynamics with normalizing flows
OM Dugan, PY Lu, R Dangovski, D Luo, M Soljacic
International Conference on Machine Learning, 8879-8901, 2023
82023
Model stitching: Looking for functional similarity between representations
A Hernandez, R Dangovski, PY Lu, M Soljacic
arXiv preprint arXiv:2303.11277, 2023
62023
Multimodal learning for crystalline materials
V Moro, C Loh, R Dangovski, A Ghorashi, A Ma, Z Chen, PY Lu, ...
arXiv preprint arXiv:2312.00111, 2023
12023
Deep Stochastic Mechanics
E Orlova, A Ustimenko, R Jiang, PY Lu, R Willett
arXiv preprint arXiv:2305.19685, 2023
12023
Studying Phase Transitions in Contrastive Learning With Physics-Inspired Datasets
A Cy, A Chemparathy, M Han, R Dangovski, PY Lu, M Soljacic
ICLR 2023 Workshop on Physics for Machine Learning, 2023
12023
Embed and Emulate: Contrastive representations for simulation-based inference
R Jiang, PY Lu, R Willett
arXiv preprint arXiv:2409.18402, 2024
2024
Training Machine Learning Emulators to Preserve Invariant Measures of Chaotic Attractors
P Lu, R Jiang, E Orlova, R Willett
Bulletin of the American Physical Society, 2024
2024
Q-Flow: Generative Modeling for Open Quantum Dynamics with Normalizing Flows
O Dugan, P Lu, R Dangovski, D Luo, M Soljacic
Bulletin of the American Physical Society, 2024
2024
NBA2Vec: Dense feature representations of NBA players
W Guan, N Javed, P Lu
arXiv preprint arXiv:2302.13386, 2023
2023
The system can't perform the operation now. Try again later.
Articles 1–20