Moore–Gibson–Thompson equation with memory, part II: general decay of energy I Lasiecka, X Wang Journal of Differential Equations 259 (12), 7610-7635, 2015 | 170 | 2015 |
Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy I Lasiecka, X Wang Zeitschrift für angewandte Mathematik und Physik 67, 1-23, 2016 | 122 | 2016 |
Intrinsic decay rate estimates for semilinear abstract second order equations with memory I Lasiecka, X Wang New prospects in direct, inverse and control problems for evolution …, 2014 | 70 | 2014 |
Existence and sharp decay rate estimates for a von Karman system with long memory MM Cavalcanti, ADD Cavalcanti, I Lasiecka, X Wang Nonlinear Analysis: Real World Applications 22, 289-306, 2015 | 66 | 2015 |
Boundary layers for the upper convected Maxwell fluid M Renardy, X Wang Journal of Non-Newtonian Fluid Mechanics 189, 14-18, 2012 | 24 | 2012 |
Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids M Renardy, X Wang Journal of Mathematical Fluid Mechanics 16 (1), 179-191, 2014 | 12 | 2014 |
Well‐posedness of the upper convected Maxwell fluid in the limit of infinite Weissenberg number X Wang, M Renardy Mathematical methods in the applied sciences 34 (2), 125-139, 2011 | 9 | 2011 |
Global existence of smooth solutions to the anisotropic hyperdissipative Navier− Stokes equations XJ Wang Zeitschrift für angewandte Mathematik und Physik 66, 389-398, 2015 | 1 | 2015 |
Well-posedness results for a class of complex flow problems in the high Weissenberg number limit X Wang Virginia Tech, 2012 | | 2012 |
High Weissenberg Number and Boundary Layer X Wang, M Renardy | | |