An efficient prediction-based user recruitment for mobile crowdsensing E Wang, Y Yang, J Wu, W Liu, X Wang IEEE Transactions on Mobile Computing 17 (1), 16-28, 2017 | 211 | 2017 |
A prediction-based user selection framework for heterogeneous mobile crowdsensing Y Yang, W Liu, E Wang, J Wu IEEE Transactions on Mobile Computing 18 (11), 2460-2473, 2018 | 98 | 2018 |
A unified collaborative representation learning for neural-network based recommender systems Y Xu, E Wang, Y Yang, Y Chang IEEE Transactions on Knowledge and Data Engineering 34 (11), 5126-5139, 2021 | 87 | 2021 |
Dynamic user recruitment with truthful pricing for mobile crowdsensing W Liu, Y Yang, E Wang, J Wu IEEE INFOCOM 2020-IEEE Conference on Computer Communications, 1113-1122, 2020 | 64 | 2020 |
Deep learning-enabled sparse industrial crowdsensing and prediction E Wang, M Zhang, X Cheng, Y Yang, W Liu, H Yu, L Wang, J Zhang IEEE Transactions on Industrial Informatics 17 (9), 6170-6181, 2020 | 61 | 2020 |
Reinforcement learning-based cell selection in sparse mobile crowdsensing W Liu, L Wang, E Wang, Y Yang, D Zeghlache, D Zhang Computer Networks 161, 102-114, 2019 | 61 | 2019 |
User recruitment for enhancing data inference accuracy in sparse mobile crowdsensing W Liu, Y Yang, E Wang, J Wu IEEE Internet of Things Journal 7 (3), 1802-1814, 2019 | 58 | 2019 |
Logparse: Making log parsing adaptive through word classification W Meng, Y Liu, F Zaiter, S Zhang, Y Chen, Y Zhang, Y Zhu, E Wang, ... 2020 29th International Conference on Computer Communications and Networks …, 2020 | 54 | 2020 |
Efficient traffic congestion estimation using multiple spatio-temporal properties Y Yang, Y Xu, J Han, E Wang, W Chen, L Yue Neurocomputing 267, 344-353, 2017 | 54 | 2017 |
Improving existing collaborative filtering recommendations via serendipity-based algorithm Y Yang, Y Xu, E Wang, J Han, Z Yu IEEE Transactions on Multimedia 20 (7), 1888-1900, 2017 | 51 | 2017 |
Spatial-temporal interval aware sequential POI recommendation E Wang, Y Jiang, Y Xu, L Wang, Y Yang 2022 IEEE 38th international conference on data engineering (ICDE), 2086-2098, 2022 | 46 | 2022 |
Cell selection with deep reinforcement learning in sparse mobile crowdsensing L Wang, W Liu, D Zhang, Y Wang, E Wang, Y Yang 2018 IEEE 38th International Conference on Distributed Computing Systems …, 2018 | 42 | 2018 |
Privacy-preserving online task assignment in spatial crowdsourcing: A graph-based approach H Wang, E Wang, Y Yang, J Wu, F Dressler IEEE INFOCOM 2022-IEEE Conference on Computer Communications, 570-579, 2022 | 38 | 2022 |
Reinforcement learning based advertising strategy using crowdsensing vehicular data K Lou, Y Yang, E Wang, Z Liu, T Baker, AK Bashir IEEE Transactions on Intelligent Transportation Systems 22 (7), 4635-4647, 2020 | 35 | 2020 |
Slanderous user detection with modified recurrent neural networks in recommender system Y Xu, Y Yang, J Han, E Wang, J Ming, H Xiong Information Sciences 505, 265-281, 2019 | 32 | 2019 |
Discovering urban traffic congestion propagation patterns with taxi trajectory data Z Chen, Y Yang, L Huang, E Wang, D Li IEEE Access 6, 69481-69491, 2018 | 32 | 2018 |
Prediction based user selection in time-sensitive mobile crowdsensing W Liu, Y Yang, E Wang, Z Han, X Wang 2017 14th Annual IEEE International Conference on Sensing, Communication …, 2017 | 31 | 2017 |
A Knapsack-based buffer management strategy for delay-tolerant networks E Wang, Y Yang, J Wu Journal of Parallel and Distributed Computing 86, 1-15, 2015 | 31 | 2015 |
Truthful user recruitment for cooperative crowdsensing task: A combinatorial multi-armed bandit approach H Wang, Y Yang, E Wang, W Liu, Y Xu, J Wu IEEE Transactions on Mobile Computing 22 (7), 4314-4331, 2022 | 29 | 2022 |
Towards robust task assignment in mobile crowdsensing systems L Wang, Z Yu, K Wu, D Yang, E Wang, T Wang, Y Mei, B Guo IEEE Transactions on Mobile Computing 22 (7), 4297-4313, 2022 | 29 | 2022 |