Learning to detect salient objects with image-level supervision L Wang, H Lu, Y Wang, M Feng, D Wang, B Yin, X Ruan Proceedings of the IEEE conference on computer vision and pattern …, 2017 | 1383 | 2017 |
The sixth visual object tracking vot2018 challenge results M Kristan, A Leonardis, J Matas, M Felsberg, R Pflugfelder, ... Proceedings of the European conference on computer vision (ECCV) workshops, 0-0, 2018 | 1017 | 2018 |
End-to-end image super-resolution via deep and shallow convolutional networks Y Wang, L Wang, H Wang, P Li arXiv preprint arXiv:1607.07680, 2016, 2016 | 177 | 2016 |
Biologically inspired image enhancement based on Retinex Y Wang, H Wang, C Yin, M Dai Neurocomputing 177, 373-384, 2016 | 90 | 2016 |
Deeplens: Shallow depth of field from a single image L Wang, X Shen, J Zhang, O Wang, Z Lin, CY Hsieh, S Kong, H Lu arXiv preprint arXiv:1810.08100, 2018 | 66 | 2018 |
Cliffnet for monocular depth estimation with hierarchical embedding loss L Wang, J Zhang, Y Wang, H Lu, X Ruan European Conference on Computer Vision, 316-331, 2020 | 64 | 2020 |
You only infer once: Cross-modal meta-transfer for referring video object segmentation D Li, R Li, L Wang, Y Wang, J Qi, L Zhang, T Liu, Q Xu, H Lu Proceedings of the AAAI Conference on Artificial Intelligence 36 (2), 1297-1305, 2022 | 54 | 2022 |
Can scale-consistent monocular depth be learned in a self-supervised scale-invariant manner? L Wang, Y Wang, L Wang, Y Zhan, Y Wang, H Lu Proceedings of the IEEE/CVF international conference on computer vision …, 2021 | 48 | 2021 |
Resolution-aware network for image super-resolution Y Wang, L Wang, H Wang, P Li IEEE Transactions on Circuits and Systems for Video Technology 29 (5), 1259-1269, 2018 | 48 | 2018 |
Multi-source uncertainty mining for deep unsupervised saliency detection Y Wang, W Zhang, L Wang, T Liu, H Lu Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 41 | 2022 |
基于双边滤波的图像去雾 王一帆, 尹传历, 黄义明, 王洪玉 中国图象图形学报 19 (3), 386-392, 2014 | 37 | 2014 |
Blind single image super-resolution with a mixture of deep networks Y Wang, L Wang, H Wang, P Li, H Lu Pattern Recognition 102, 107169, 2020 | 29 | 2020 |
Information-compensated downsampling for image super-resolution Y Wang, L Wang, H Wang, P Li IEEE Signal Processing Letters 25 (5), 685-689, 2018 | 17 | 2018 |
Multi-modal Instruction Tuned LLMs with Fine-grained Visual Perception J He, Y Wang, L Wang, H Lu, JY He, JP Lan, B Luo, X Xie Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 13 | 2024 |
Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning J He, Y Wang, L Wang, H Lu, B Luo, JY He, JP Lan, Y Geng, X Xie Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 12 | 2023 |
Isomer: Isomerous transformer for zero-shot video object segmentation Y Yuan, Y Wang, L Wang, X Zhao, H Lu, Y Wang, W Su, L Zhang Proceedings of the IEEE/CVF international conference on computer vision, 966-976, 2023 | 9 | 2023 |
CSANet for video semantic segmentation with inter-frame mutual learning Y Yuan, L Wang, Y Wang IEEE Signal Processing Letters 28, 1675-1679, 2021 | 9 | 2021 |
From pixels to semantics: self-supervised video object segmentation with multiperspective feature mining R Li, Y Wang, L Wang, H Lu, X Wei, Q Zhang IEEE Transactions on Image Processing 31, 5801-5812, 2022 | 7 | 2022 |
Bev-io: Enhancing bird's-eye-view 3d detection with instance occupancy Z Zhang, Y Zhang, L Wang, Y Wang, H Lu arXiv preprint arXiv:2305.16829, 2023 | 5 | 2023 |
Temporal consistent portrait video segmentation Y Wang, W Zhang, L Wang, F Yang, H Lu Pattern Recognition 120, 108143, 2021 | 5 | 2021 |