Datacomp: In search of the next generation of multimodal datasets SY Gadre, G Ilharco, A Fang, J Hayase, G Smyrnis, T Nguyen, R Marten, ... Advances in Neural Information Processing Systems 36, 2024 | 354 | 2024 |
Evaluating machine accuracy on imagenet V Shankar, R Roelofs, H Mania, A Fang, B Recht, L Schmidt International Conference on Machine Learning, 8634-8644, 2020 | 188 | 2020 |
Multimodal c4: An open, billion-scale corpus of images interleaved with text W Zhu, J Hessel, A Awadalla, SY Gadre, J Dodge, A Fang, Y Yu, ... Advances in Neural Information Processing Systems 36, 2024 | 158 | 2024 |
Data determines distributional robustness in contrastive language image pre-training (clip) A Fang, G Ilharco, M Wortsman, Y Wan, V Shankar, A Dave, L Schmidt International Conference on Machine Learning, 6216-6234, 2022 | 143 | 2022 |
Data Filtering Networks A Fang, AM Jose, A Jain, L Schmidt, A Toshev, V Shankar arXiv preprint arXiv:2309.17425, 2023 | 115 | 2023 |
Neural kernels without tangents V Shankar, A Fang, W Guo, S Fridovich-Keil, J Ragan-Kelley, L Schmidt, ... International Conference on Machine Learning, 8614-8623, 2020 | 104 | 2020 |
Datacomp-lm: In search of the next generation of training sets for language models J Li, A Fang, G Smyrnis, M Ivgi, M Jordan, S Gadre, H Bansal, E Guha, ... arXiv preprint arXiv:2406.11794, 2024 | 38 | 2024 |
Does progress on ImageNet transfer to real-world datasets? A Fang, S Kornblith, L Schmidt Advances in Neural Information Processing Systems 36, 2024 | 23 | 2024 |
Neural priming for sample-efficient adaptation M Wallingford, V Ramanujan, A Fang, A Kusupati, R Mottaghi, ... Advances in Neural Information Processing Systems 36, 2024 | 11 | 2024 |
Neural Radiance Field Codebooks M Wallingford, A Kusupati, A Fang, V Ramanujan, A Kembhavi, ... arXiv preprint arXiv:2301.04101, 2023 | 10 | 2023 |