Is Pessimism Provably Efficient for Offline Reinforcement Learning? Y Jin, Z Yang, Z Wang Mathematics of Operations Research, 2024 | 449* | 2024 |
Contemporary symbolic regression methods and their relative performance W La Cava, P Orzechowski, B Burlacu, FO de França, M Virgolin, Y Jin, ... Proceedings of the Neural Information Processing Systems (Track on Datasets …, 2021 | 312 | 2021 |
Bayesian symbolic regression Y Jin, W Fu, J Kang, J Guo, J Guo arXiv preprint arXiv:1910.08892, 2019 | 108 | 2019 |
Sensitivity analysis of individual treatment effects: A robust conformal inference approach Y Jin, Z Ren, EJ Candès Proceedings of the National Academy of Sciences 120 (6), e2214889120, 2023 | 69 | 2023 |
Uncertainty quantification over graph with conformalized graph neural networks K Huang, Y Jin, E Candes, J Leskovec Advances in Neural Information Processing Systems 36, 2024 | 67 | 2024 |
Selection by prediction with conformal p-values Y Jin, EJ Candès Journal of Machine Learning Research 24 (244), 1-41, 2023 | 32 | 2023 |
Policy learning" without''overlap: Pessimism and generalized empirical Bernstein's inequality Y Jin, Z Ren, Z Yang, Z Wang arXiv preprint arXiv:2212.09900, 2022 | 27 | 2022 |
Sensitivity analysis under the -sensitivity models: a distributional robustness perspective Y Jin, Z Ren, Z Zhou arXiv preprint arXiv:2203.04373, 2022 | 22* | 2022 |
Toward optimal variance reduction in online controlled experiments Y Jin, S Ba Technometrics 65 (2), 231-242, 2023 | 18 | 2023 |
Model-free selective inference under covariate shift via weighted conformal p-values Y Jin, EJ Candès arXiv preprint arXiv:2307.09291, 2023 | 15 | 2023 |
Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees Y Gui, Y Jin, Z Ren arXiv preprint arXiv:2405.10301, 2024 | 14 | 2024 |
Upper bounds on the Natarajan dimensions of some function classes Y Jin 2023 IEEE International Symposium on Information Theory (ISIT), 1020-1025, 2023 | 11 | 2023 |
Tailored inference for finite populations: conditional validity and transfer across distributions Y Jin, D Rothenhäusler Biometrika 111 (1), 215-233, 2024 | 9* | 2024 |
Confidence on the focal: Conformal prediction with selection-conditional coverage Y Jin, Z Ren arXiv preprint arXiv:2403.03868, 2024 | 8 | 2024 |
Diagnosing the role of observable distribution shift in scientific replications Y Jin, K Guo, D Rothenhäusler arXiv preprint arXiv:2309.01056, 2023 | 6 | 2023 |
Knowledge graph embedding with electronic health records data via latent graphical block model J Lu, Y Jin, T Cai arXiv preprint arXiv:2305.19997, 2023 | 5 | 2023 |
Optimized Conformal Selection: Powerful Selective Inference After Conformity Score Optimization T Bai, Y Jin arXiv preprint arXiv:2411.17983, 2024 | 1 | 2024 |
Modular regression: improving linear models by incorporating auxiliary data Y Jin, D Rothenhäusler Journal of Machine Learning Research 24 (351), 1-52, 2023 | 1 | 2023 |
Beyond Reweighting: On the Predictive Role of Covariate Shift in Effect Generalization Y Jin, N Egami, D Rothenhäusler arXiv preprint arXiv:2412.08869, 2024 | | 2024 |
Confident Prediction and Generalizable Inference in Modern Data Paradigms Y Jin Stanford University, 2024 | | 2024 |