Follow
Omar S. M. El Nahhas
Omar S. M. El Nahhas
Computational pathology lead | StratifAI, Kather Lab
Verified email at tu-dresden.de - Homepage
Title
Cited by
Cited by
Year
Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab–bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study
Q Zeng, C Klein, S Caruso, P Maille, DS Allende, B Mínguez, M Iavarone, ...
The Lancet Oncology 24 (12), 1411-1422, 2023
432023
Regression-based Deep-Learning predicts molecular biomarkers from pathology slides
OSM El Nahhas, CML Loeffler, ZI Carrero, M van Treeck, FR Kolbinger, ...
nature communications 15 (1), 1253, 2024
372024
In-context learning enables multimodal large language models to classify cancer pathology images
D Ferber, G Wölflein, IC Wiest, M Ligero, S Sainath, N Ghaffari Laleh, ...
Nature Communications 15 (1), 10104, 2024
162024
From whole-slide image to biomarker prediction: end-to-end weakly supervised deep learning in computational pathology
OSM El Nahhas, M van Treeck, G Wölflein, M Unger, M Ligero, T Lenz, ...
Nature Protocols 20 (1), 293-316, 2025
132025
Prediction of homologous recombination deficiency from routine histology with attention-based multiple instance learning in nine different tumor types
CML Loeffler, OSM El Nahhas, HS Muti, ZI Carrero, T Seibel, ...
BMC biology 22 (1), 225, 2024
13*2024
Autonomous artificial intelligence agents for clinical decision making in oncology
D Ferber, OSM El Nahhas, G Wölflein, IC Wiest, J Clusmann, ME Leßman, ...
arXiv preprint arXiv:2404.04667, 2024
102024
Benchmarking foundation models as feature extractors for weakly-supervised computational pathology
P Neidlinger, OSM El Nahhas, HS Muti, T Lenz, M Hoffmeister, H Brenner, ...
arXiv preprint arXiv:2408.15823, 2024
82024
Direct image to subtype prediction for brain tumors using deep learning
KJ Hewitt, CML Löffler, HS Muti, AS Berghoff, C Eisenlöffel, M van Treeck, ...
Neuro-oncology advances 5 (1), vdad139, 2023
82023
A Good Feature Extractor Is All You Need for Weakly Supervised Learning in Histopathology
G Wölflein, D Ferber, AR Meneghetti, OSM El Nahhas, D Truhn, ...
arXiv preprint arXiv:2311.11772, 2023
62023
Weakly supervised deep learning predicts immunotherapy response in solid tumors based on PD-L1 expression
M Ligero, G Serna, OSM El Nahhas, I Sansano, S Mauchanski, ...
Cancer Research Communications 4 (1), 92-102, 2024
52024
Benchmarking pathology feature extractors for whole slide image classification
G Wölflein, D Ferber, AR Meneghetti, OSM El Nahhas, D Truhn, ...
Preprint at https://arxiv. org/abs/2311.11772, 2023
52023
Multimodal histopathologic models stratify hormone receptor-positive early breast cancer
KM Boehm, OSM El Nahhas, A Marra, P Selenica, HY Wen, B Weigelt, ...
BioRxiv, 2024.02. 23.581806, 2024
32024
Joint multi-task learning improves weakly-supervised biomarker prediction in computational pathology
OSM El Nahhas, G Wölflein, M Ligero, T Lenz, M van Treeck, F Khader, ...
International Conference on Medical Image Computing and Computer-Assisted …, 2024
22024
Histopathological evaluation of abdominal aortic aneurysms with deep learning
FR Kolbinger, OSM El Nahhas, MC Nackenhorst, C Brostjan, W Eilenberg, ...
medRxiv, 2024
12024
Artificial intelligence-based biomarkers for treatment decisions in oncology
M Ligero, OSM El Nahhas, M Aldea, JN Kather
Trends in Cancer, 2025
2025
Abnormality-Driven Representation Learning for Radiology Imaging
M Ligero, T Lenz, G Wölflein, OSM El Nahhas, D Truhn, JN Kather
arXiv preprint arXiv:2411.16803, 2024
2024
Compute-Efficient Medical Image Classification with Softmax-Free Transformers and Sequence Normalization
F Khader, OSM El Nahhas, T Han, G Müller-Franzes, S Nebelung, ...
arXiv preprint arXiv:2406.01314, 2024
2024
Abstract LB386: Weakly-supervised prediction of tumor infiltrating lymphocytes per high power field from colorectal cancer histopathology slides using regression transformers
OSE Nahhas, JD Bonner, JK Greenson, DB Schmolze, L Shaktah, ...
Cancer Research 84 (7_Supplement), LB386-LB386, 2024
2024
Abstract LB384: Artificial intelligence measures of tumor infiltrating lymphocytes predict colorectal cancer-specific and overall survival
SB Gruber, OSE Nahhas, JD Bonner, JK Greenson, D Schmolze, ...
Cancer Research 84 (7_Supplement), LB384-LB384, 2024
2024
Simultaneous prediction of tumor microenvironment biomarkers from pathology slides using multi-task deep regression
OSE Nahhas, M Ligero, JN Kather
Cancer Research 84 (6_Supplement), 6191-6191, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20