Follow
Nathan Hütsch
Nathan Hütsch
Verified email at thphys.uni-heidelberg.de
Title
Cited by
Cited by
Year
Jet Diffusion versus JetGPT--Modern Networks for the LHC
A Butter, N Huetsch, SP Schweitzer, T Plehn, P Sorrenson, J Spinner
arXiv preprint arXiv:2305.10475, 2023
352023
The madnis reloaded
T Heimel, N Huetsch, F Maltoni, O Mattelaer, T Plehn, R Winterhalder
SciPost Physics 17 (1), 023, 2024
202024
Precision-machine learning for the matrix element method
T Heimel, N Huetsch, R Winterhalder, T Plehn, A Butter
SciPost Physics 17 (5), 129, 2024
192024
GASP, a generalized framework for agglomerative clustering of signed graphs and its application to Instance Segmentation
A Bailoni, C Pape, N Hütsch, S Wolf, T Beier, A Kreshuk, FA Hamprecht
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022
162022
The Landscape of Unfolding with Machine Learning
N Huetsch, JM Villadamigo, A Shmakov, S Diefenbacher, V Mikuni, ...
arXiv preprint arXiv:2404.18807, 2024
112024
Jet Diffusion versus JetGPT–Modern Networks for the LHC (2023)
A Butter, N Huetsch, SP Schweitzer, T Plehn, P Sorrenson, J Spinner
arXiv preprint arXiv:2305.10475, 0
8
Jet diffusion versus JetGPT–Modern networks for the LHC,(arXiv preprint) doi: 10.48550
A Butter, N Huetsch, SP Schweitzer, T Plehn, P Sorrenson, J Spinner
arXiv preprint arXiv.2305.10475, 0
6
The MadNIS Reloaded (2023)
T Heimel, N Huetsch, F Maltoni, O Mattelaer, T Plehn, R Winterhalder
arXiv preprint arXiv:2311.01548, 0
6
Precision-Machine Learning for the Matrix Element Method (2023)
T Heimel, N Huetsch, R Winterhalder, T Plehn, A Butter
arXiv preprint arXiv:2310.07752, 0
5
Generative Unfolding with Distribution Mapping
A Butter, S Diefenbacher, N Huetsch, V Mikuni, B Nachman, ...
arXiv preprint arXiv:2411.02495, 2024
12024
The system can't perform the operation now. Try again later.
Articles 1–10