Follow
Jonathan Monk
Jonathan Monk
Verified email at ucsd.edu
Title
Cited by
Cited by
Year
Constraint-based models predict metabolic and associated cellular functions
A Bordbar, JM Monk, ZA King, BO Palsson
Nature Reviews Genetics 15 (2), 107-120, 2014
9602014
Using genome-scale models to predict biological capabilities
EJ O’Brien, JM Monk, BO Palsson
Cell 161 (5), 971-987, 2015
7582015
Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network
YS Ang, SY Tsai, DF Lee, J Monk, J Su, K Ratnakumar, J Ding, Y Ge, ...
Cell 145 (2), 183-197, 2011
6712011
iML1515, a knowledgebase that computes Escherichia coli traits
JM Monk, CJ Lloyd, E Brunk, N Mih, A Sastry, Z King, R Takeuchi, ...
Nature biotechnology 35 (10), 904-908, 2017
5512017
MEMOTE for standardized genome-scale metabolic model testing
C Lieven, ME Beber, BG Olivier, FT Bergmann, M Ataman, P Babaei, ...
Nature biotechnology 38 (3), 272-276, 2020
4132020
Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments
JM Monk, P Charusanti, RK Aziz, JA Lerman, N Premyodhin, JD Orth, ...
Proceedings of the National Academy of Sciences 110 (50), 20338-20343, 2013
3392013
What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira
DE Fouts, MA Matthias, H Adhikarla, B Adler, L Amorim-Santos, DE Berg, ...
PLoS neglected tropical diseases 10 (2), e0004403, 2016
3332016
Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity
E Bosi, JM Monk, RK Aziz, M Fondi, V Nizet, BØ Palsson
Proceedings of the National Academy of Sciences 113 (26), E3801-E3809, 2016
2682016
Optimizing genome-scale network reconstructions
J Monk, J Nogales, BO Palsson
Nature biotechnology 32 (5), 447-452, 2014
2432014
Machine learning and structural analysis of Mycobacterium tuberculosis pan-genome identifies genetic signatures of antibiotic resistance
ES Kavvas, E Catoiu, N Mih, JT Yurkovich, Y Seif, N Dillon, D Heckmann, ...
Nature communications 9 (1), 4306, 2018
1892018
High‐quality genome‐scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities
J Nogales, J Mueller, S Gudmundsson, FJ Canalejo, E Duque, J Monk, ...
Environmental microbiology 22 (1), 255-269, 2020
1702020
Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes
JM Monk, A Koza, MA Campodonico, D Machado, JM Seoane, ...
Cell systems 3 (3), 238-251. e12, 2016
1402016
Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits
Y Seif, E Kavvas, JC Lachance, JT Yurkovich, SP Nuccio, X Fang, ...
Nature communications 9 (1), 3771, 2018
1352018
Model-driven discovery of underground metabolic functions in Escherichia coli
GI Guzmán, J Utrilla, S Nurk, E Brunk, JM Monk, A Ebrahim, BO Palsson, ...
Proceedings of the National Academy of Sciences 112 (3), 929-934, 2015
1132015
Cellular responses to reactive oxygen species are predicted from molecular mechanisms
L Yang, N Mih, A Anand, JH Park, J Tan, JT Yurkovich, JM Monk, CJ Lloyd, ...
Proceedings of the National Academy of Sciences 116 (28), 14368-14373, 2019
1092019
Characterizing strain variation in engineered E. coli using a multi-omics-based workflow
E Brunk, KW George, J Alonso-Gutierrez, M Thompson, E Baidoo, ...
Cell systems 2 (5), 335-346, 2016
1022016
BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data
JC Lachance, CJ Lloyd, JM Monk, L Yang, AV Sastry, Y Seif, BO Palsson, ...
PLoS computational biology 15 (4), e1006971, 2019
972019
A biochemically-interpretable machine learning classifier for microbial GWAS
ES Kavvas, L Yang, JM Monk, D Heckmann, BO Palsson
Nature communications 11 (1), 2580, 2020
792020
A workflow for generating multi-strain genome-scale metabolic models of prokaryotes
CJ Norsigian, X Fang, Y Seif, JM Monk, BO Palsson
Nature protocols 15 (1), 1-14, 2020
752020
Machine learning with random subspace ensembles identifies antimicrobial resistance determinants from pan-genomes of three pathogens
JC Hyun, ES Kavvas, JM Monk, BO Palsson
PLoS computational biology 16 (3), e1007608, 2020
682020
The system can't perform the operation now. Try again later.
Articles 1–20