A physics-driven deep-learning network for solving nonlinear inverse problems Y Jin, Q Shen, X Wu, J Chen, Y Huang Petrophysics 61 (01), 86-98, 2020 | 49 | 2020 |
Fast and accurate 3-D ray tracing using bilinear traveltime interpolation and the wave front group marching J Zhang, Y Huang, LP Song, QH Liu Geophysical Journal International 184 (3), 1327-1340, 2011 | 48 | 2011 |
Three-dimensional GPR ray tracing based on wavefront expansion with irregular cells Y Huang, J Zhang, QH Liu IEEE Transactions on Geoscience and Remote Sensing 49 (2), 679-687, 2010 | 41 | 2010 |
Solving geosteering inverse problems by stochastic Hybrid Monte Carlo method Q Shen, X Wu, J Chen, Z Han, Y Huang Journal of Petroleum Science and Engineering 161, 9-16, 2018 | 35 | 2018 |
Using a physics-driven deep neural network to solve inverse problems for LWD azimuthal resistivity measurements Y Jin, X Wu, J Chen, Y Huang SPWLA Annual Logging Symposium, D053S015R002, 2019 | 29 | 2019 |
The mixed finite-element method with mass lumping for computing optical waveguide modes N Liu, G Cai, C Zhu, Y Huang, QH Liu IEEE Journal of Selected Topics in Quantum Electronics 22 (2), 187-195, 2015 | 27 | 2015 |
A deep learning-enhanced framework for multiphysics joint inversion Y Hu, X Wei, X Wu, J Sun, J Chen, Y Huang, J Chen Geophysics 88 (1), K13-K26, 2023 | 21 | 2023 |
Rapid simulation of electromagnetic telemetry using an axisymmetric semianalytical finite element method J Chen, S Zeng, Q Dong, Y Huang Journal of Applied Geophysics 137, 49-54, 2017 | 18 | 2017 |
Improved 3-D GPR detection by NUFFT combined with MPD method Y Huang, Y Liu, QH Liu, J Zhang Progress In Electromagnetics Research 103, 185-199, 2010 | 17 | 2010 |
Parallel tempered trans-dimensional Bayesian inference for the inversion of ultra-deep directional logging-while-drilling resistivity measurements Q Shen, J Chen, X Wu, Z Han, Y Huang Journal of Petroleum Science and Engineering 188, 106961, 2020 | 10 | 2020 |
Three-dimensional cooperative inversion of airborne magnetic and gravity gradient data using deep-learning techniques Y Hu, X Wei, X Wu, J Sun, Y Huang, J Chen Geophysics 89 (1), WB67-WB79, 2024 | 8 | 2024 |
Deep learning-assisted real-time forward modeling of electromagnetic logging in complex formations L Yan, Y Jin, C Qi, P Yuan, S Wang, X Wu, Y Huang, J Chen IEEE Geoscience and Remote Sensing Letters 19, 1-5, 2022 | 8 | 2022 |
Deep learning enhanced joint inversion of multiphysics data with nonconforming discretization Y Hu, J Chen, X Wu, Y Huang 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI …, 2021 | 8 | 2021 |
Deep learning enhanced joint geophysical inversion for crosswell monitoring Y Hu, Y Jin, X Wu, J Chen, J Chen, Q Shen, Y Huang 2021 United States National Committee of URSI National Radio Science Meeting …, 2021 | 7 | 2021 |
Statistical geosteering inversion by Hamiltonian dynamics Monte Carlo method Q Shen, H Lu, X Wu, X Fu, J Chen, Z Han, Y Huang SEG International Exposition and Annual Meeting, SEG-2017-17663093, 2017 | 7 | 2017 |
A physics-driven deep learning network for subsurface inversion Y Jin, X Wu, J Chen, Y Huang 2019 United States National Committee of URSI National Radio Science Meeting …, 2019 | 5 | 2019 |
A flexible and versatile joint inversion framework using deep learning Y Hu, J Chen, X Wu, Y Huang SEG International Exposition and Annual Meeting, D011S079R001, 2022 | 4 | 2022 |
基于波前传播时间插值的三维声线追踪算法 黄月琴, 张建中 声学学报 33 (1), 21-27, 2008 | 4 | 2008 |
A deep learning based surrogate and uncertainty quantification for fast electromagnetic modeling in complex formations Y Jin, C Qi, L Yan, Y Huang, X Wu, J Chen Second International Meeting for Applied Geoscience & Energy, 717-721, 2022 | 3 | 2022 |
Bifidelity gradient-based approach for nonlinear well-logging inverse problems H Lu, Q Shen, J Chen, X Wu, X Fu, M Khalil, C Safta, Y Huang IEEE Journal on Multiscale and Multiphysics Computational Techniques 5, 132-143, 2020 | 3 | 2020 |