Guided flows for generative modeling and decision making Q Zheng, M Le, N Shaul, Y Lipman, A Grover, RTQ Chen arXiv preprint arXiv:2311.13443, 2023 | 23 | 2023 |
Discrete flow matching I Gat, T Remez, N Shaul, F Kreuk, RTQ Chen, G Synnaeve, Y Adi, ... Advances in Neural Information Processing Systems 37, 133345-133385, 2025 | 21 | 2025 |
On kinetic optimal probability paths for generative models N Shaul, RTQ Chen, M Nickel, M Le, Y Lipman International Conference on Machine Learning, 30883-30907, 2023 | 21 | 2023 |
Bespoke solvers for generative flow models N Shaul, J Perez, RTQ Chen, A Thabet, A Pumarola, Y Lipman arXiv preprint arXiv:2310.19075, 2023 | 17 | 2023 |
Flow matching guide and code Y Lipman, M Havasi, P Holderrieth, N Shaul, M Le, B Karrer, RTQ Chen, ... arXiv preprint arXiv:2412.06264, 2024 | 4 | 2024 |
Bespoke Non-Stationary Solvers for Fast Sampling of Diffusion and Flow Models N Shaul, U Singer, RTQ Chen, M Le, A Thabet, A Pumarola, Y Lipman arXiv preprint arXiv:2403.01329, 2024 | 2 | 2024 |
Generator Matching: Generative modeling with arbitrary Markov processes P Holderrieth, M Havasi, J Yim, N Shaul, I Gat, T Jaakkola, B Karrer, ... arXiv preprint arXiv:2410.20587, 2024 | 1 | 2024 |
Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective N Shaul, I Gat, M Havasi, D Severo, A Sriram, P Holderrieth, B Karrer, ... arXiv preprint arXiv:2412.03487, 2024 | | 2024 |