Motion-aware contrastive video representation learning via foreground-background merging S Ding, M Li, T Yang, R Qian, H Xu, Q Chen, J Wang, H Xiong Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 63 | 2022 |
Semi-supervised contrastive learning with similarity co-calibration Y Zhang, X Zhang, J Li, RC Qiu, H Xu, Q Tian IEEE Transactions on Multimedia 25, 1749-1759, 2022 | 61 | 2022 |
Seed the views: Hierarchical semantic alignment for contrastive representation learning H Xu, X Zhang, H Li, L Xie, W Dai, H Xiong, Q Tian IEEE Transactions on Pattern Analysis and Machine Intelligence 45 (3), 3753-3767, 2022 | 47 | 2022 |
Masked autoencoders are robust data augmentors H Xu, S Ding, X Zhang, H Xiong, Q Tian arXiv preprint arXiv:2206.04846, 2022 | 32 | 2022 |
Bag of instances aggregation boosts self-supervised distillation H Xu, J Fang, X Zhang, L Xie, X Wang, W Dai, H Xiong, Q Tian arXiv preprint arXiv:2107.01691, 2021 | 30 | 2021 |
Fedmax: Enabling a highly-efficient federated learning framework H Xu, J Li, H Xiong, H Lu 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), 426-434, 2020 | 28 | 2020 |
-Shot Contrastive Learning of Visual Features With Multiple Instance Augmentations H Xu, H Xiong, GJ Qi IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (11), 8694 …, 2021 | 13 | 2021 |
Semantic-aware generation for self-supervised visual representation learning Y Tian, L Xie, X Zhang, J Fang, H Xu, W Huang, J Jiao, Q Tian, Q Ye arXiv preprint arXiv:2111.13163, 2021 | 11 | 2021 |
Multi-dataset pretraining: A unified model for semantic segmentation B Shi, X Zhang, H Xu, W Dai, J Zou, H Xiong, Q Tian arXiv preprint arXiv:2106.04121, 2021 | 11 | 2021 |
Auto-encoding transformations in reparameterized lie groups for unsupervised learning F Lin, H Xu, H Li, H Xiong, GJ Qi Proceedings of the AAAI Conference on Artificial Intelligence 35 (10), 8610-8617, 2021 | 9* | 2021 |
Betrayed by attention: A simple yet effective approach for self-supervised video object segmentation S Ding, R Qian, H Xu, D Lin, H Xiong European Conference on Computer Vision, 215-233, 2024 | 5 | 2024 |
Flat: Few-shot learning via autoencoding transformation regularizers H Xu, H Xiong, G Qi arXiv preprint arXiv:1912.12674, 2019 | 3 | 2019 |
Appendix for Betrayed by Attention: A Simple yet Effective Approach for Self-supervised Video Object Segmentation S Ding, R Qian, H Xu, D Lin, H Xiong | | |