Follow
Rosalba Pacelli
Rosalba Pacelli
INFN Padova
Verified email at pd.infn.it
Title
Cited by
Cited by
Year
A statistical mechanics framework for Bayesian deep neural networks beyond the infinite-width limit
R Pacelli, S Ariosto, M Pastore, F Ginelli, M Gherardi, P Rotondo
Nature Machine Intelligence 5 (12), 1497-1507, 2023
50*2023
Learning through atypical phase transitions in overparameterized neural networks
C Baldassi, C Lauditi, EM Malatesta, R Pacelli, G Perugini, R Zecchina
Physical Review E 106 (1), 014116, 2022
322022
Local kernel renormalization as a mechanism for feature learning in overparametrized convolutional neural networks
R Aiudi, R Pacelli, P Baglioni, A Vezzani, R Burioni, P Rotondo
Nature Communications 16 (1), 568, 2025
132025
Predictive power of a bayesian effective action for fully connected one hidden layer neural networks in the proportional limit
P Baglioni, R Pacelli, R Aiudi, F Di Renzo, A Vezzani, R Burioni, ...
Physical Review Letters 133 (2), 027301, 2024
72024
Statistical mechanics of transfer learning in fully-connected networks in the proportional limit
A Ingrosso, R Pacelli, P Rotondo, F Gerace
arXiv preprint arXiv:2407.07168, 2024
52024
Universal mean-field upper bound for the generalization gap of deep neural networks
S Ariosto, R Pacelli, F Ginelli, M Gherardi, P Rotondo
Physical Review E 105 (6), 064309, 2022
42022
Kernel shape renormalization explains output-output correlations in finite Bayesian one-hidden-layer networks
P Baglioni, L Giambagli, A Vezzani, R Burioni, P Rotondo, R Pacelli
arXiv preprint arXiv:2412.15911, 2024
2024
Les Houches lectures on deep learning at large and infinite width
Y Bahri, B Hanin, A Brossollet, V Erba, C Keup, R Pacelli, JB Simon
Journal of Statistical Mechanics: Theory and Experiment 2024 (10), 104012, 2024
2024
Kernel Shape Renormalization In Bayesian Shallow Networks: a Gaussian Process Perspective
R Pacelli, L Giambagli, P Baglioni
2024 IEEE Workshop on Complexity in Engineering (COMPENG), 1-6, 2024
2024
A data-agnostic statistical mechanics approach for studying deep neural networks beyond the infinite-width limit
R Pacelli
Politecnico di Torino, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–10