Follow
Edgar Ivan Sanchez Medina
Title
Cited by
Cited by
Year
Graph neural networks for the prediction of infinite dilution activity coefficients
EIS Medina, S Linke, M Stoll, K Sundmacher
Digital Discovery 1 (3), 216-225, 2022
452022
Hybrid semi‐parametric modeling in separation processes: a review
K McBride, EI Sanchez Medina, K Sundmacher
Chemie Ingenieur Technik 92 (7), 842-855, 2020
402020
Impacts of antiscalants on the formation of calcium solids: Implication on scaling potential of desalination concentrate
T Jain, E Sanchez, E Owens-Bennett, R Trussell, S Walker, H Liu
Environmental Science: Water Research & Technology 5 (7), 1285-1294, 2019
372019
Gibbs–Helmholtz graph neural network: capturing the temperature dependency of activity coefficients at infinite dilution
EIS Medina, S Linke, M Stoll, K Sundmacher
Digital Discovery 2 (3), 781-798, 2023
162023
Understanding the dynamic behaviour of semicontinuous distillation
PB Madabhushi, EIS Medina, TA Adams II
Computer Aided Chemical Engineering 43, 845-850, 2018
102018
Gibbs–helmholtz graph neural network for the prediction of activity coefficients of polymer solutions at infinite dilution
EI Sanchez Medina, S Kunchapu, K Sundmacher
The Journal of Physical Chemistry A 127 (46), 9863-9873, 2023
52023
Computer Aided Chemical Engineering
EI Sanchez Medina, K Sundmacher
Elsevier 52, 2037-2042, 2023
52023
Machine learning-supported solvent design for lignin-first biorefineries and lignin upgrading
L König-Mattern, EIS Medina, AO Komarova, S Linke, ...
Chemical Engineering Journal 495, 153524, 2024
22024
Solvent pre-selection for extractive distillation using Gibbs-Helmholtz Graph Neural Networks
EIS Medina, K Sundmacher
Computer Aided Chemical Engineering 52, 2037-2042, 2023
22023
Prediction of bioconcentration factors (bcf) using graph neural networks
EIS Medina, S Linke, K Sundmacher
Computer Aided Chemical Engineering 50, 991-997, 2021
22021
Acyclic modular flowsheet optimization using multiple trust regions and Gaussian process regression
EIS Medina, DR Vallejo, B Chachuat, K Sundmacher, P Petsagkourakis, ...
Computer Aided Chemical Engineering 50, 1117-1123, 2021
22021
Graph neural networks for CO2 solubility predictions in Deep Eutectic Solvents
GH Morales, EIS Medina, A Jiménez-Gutiérrez, VM Zavala
Computers & Chemical Engineering, 108750, 2024
12024
A symbolic regression based methodology for the construction of interpretable and predictive thermodynamic models
S Kay, EIS Medina, K Sundmacher, D Zhang
Computer aided chemical engineering 53, 2701-2706, 2024
12024
Multi-Objective Bayesian optimization of process flowsheets using trust regions and quality set metrics.
EI Sanchez Medina, DF Rodriguez-Vallejo, EA del Rio-Chanona, ...
2021 AIChE Annual Meeting, 2021
12021
Hybrid Graph Neural Networks for the prediction of activity coefficients in separation processes
EI Sanchez Medina
Otto-von-Guericke-Universität Magdeburg, 2024
2024
Graph Neural Networks for CO2 Solubility Predictions in Deep Eutectic Solvents
EIS Medina, GH Morales, A Jimenez-Gutierrez, VM Zavala
2024
A Comparison of the UNIFAC Model vs. Graph Neural Network-based Models for the Prediction of Binary Vapor-Liquid Equilibria
EI Sanchez Medina, AJ Minor, K Sundmacher
33rd European Symposium on Applied Thermodynamics 2024, 2024
2024
PSEvolve: A graph-based solvent design framework
L König-Mattern, EI Sanchez Medina, AO Komarova, S Linke, ...
ESCAPE34, 2024
2024
Rapid phosphine ligand discovery in homogeneous catalysis: Bayesian optimization approach for low-throughput experimentation
C Griehl, EI Sanchez Medina, K Sundmacher
CHISA 2024, 2024
2024
BOHO CAT-Bayesian Optimization for Low Throughput Ligand Selection in Homogeneous Catalysis
C Griehl, EI Sanchez Medina, K Sundmacher
Cambridge ELLIS Unit Summer School 2024, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20