A critical look at the evaluation of GNNs under heterophily: Are we really making progress? O Platonov, D Kuznedelev, M Diskin, A Babenko, L Prokhorenkova arXiv preprint arXiv:2302.11640, 2023 | 221 | 2023 |
Spqr: A sparse-quantized representation for near-lossless llm weight compression T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ... arXiv preprint arXiv:2306.03078, 2023 | 218 | 2023 |
Extreme compression of large language models via additive quantization V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh arXiv preprint arXiv:2401.06118, 2024 | 74 | 2024 |
Characterizing graph datasets for node classification: Homophily-heterophily dichotomy and beyond O Platonov, D Kuznedelev, A Babenko, L Prokhorenkova Advances in Neural Information Processing Systems 36, 523-548, 2023 | 74 | 2023 |
Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko Physical Review D 103 (9), 094515, 2021 | 68 | 2021 |
Study of the confinement/deconfinement phase transition in rotating lattice SU (3) gluodynamics VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko JETP Letters 112, 6-12, 2020 | 37 | 2020 |
Lattice study of QCD at finite chiral density: topology and confinement N Astrakhantsev, VV Braguta, AY Kotov, DD Kuznedelev, AA Nikolaev The European Physical Journal A 57 (1), 15, 2021 | 21 | 2021 |
Sparse fine-tuning for inference acceleration of large language models E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh arXiv preprint arXiv:2310.06927, 2023 | 17 | 2023 |
Lattice study of the confinement/deconfinement transition in rotating gluodynamics VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko arXiv preprint arXiv:2110.12302, 2021 | 15 | 2021 |
Cap: Correlation-aware pruning for highly-accurate sparse vision models D Kuznedelev, E Kurtić, E Frantar, D Alistarh Advances in Neural Information Processing Systems 36, 28805-28831, 2023 | 13 | 2023 |
Pv-tuning: Beyond straight-through estimation for extreme llm compression V Malinovskii, D Mazur, I Ilin, D Kuznedelev, K Burlachenko, K Yi, ... Advances in Neural Information Processing Systems 37, 5074-5121, 2025 | 9 | 2025 |
Evaluating robustness and uncertainty of graph models under structural distributional shifts G Bazhenov, D Kuznedelev, A Malinin, A Babenko, L Prokhorenkova Advances in Neural Information Processing Systems 36, 75567-75594, 2023 | 8 | 2023 |
Accurate neural network pruning requires rethinking sparse optimization D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh arXiv preprint arXiv:2308.02060, 2023 | 8 | 2023 |
A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta M Velikanov, D Kuznedelev, D Yarotsky arXiv preprint arXiv:2206.11124, 2022 | 6 | 2022 |
Lattice study of QCD properties under extreme conditions: temperature, density, rotation, and magnetic field NY Astrakhantsev, VV Braguta, NV Kolomoyets, AY Kotov, ... Physics of Particles and Nuclei 52, 536-541, 2021 | 6 | 2021 |
Does Diffusion Beat GAN in Image Super Resolution? D Kuznedelev, V Startsev, D Shlenskii, S Kastryulin arXiv preprint arXiv:2405.17261, 2024 | 5 | 2024 |
Extreme compression of large language models via additive quantization, 2024 V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh URL https://arxiv. org/abs/2401.06118 63, 0 | 5 | |
ovit: An accurate second-order pruning framework for vision transformers D Kuznedelev, E Kurtic, E Frantar, D Alistarh | 3 | 2022 |
Evopress: Towards optimal dynamic model compression via evolutionary search O Sieberling, D Kuznedelev, E Kurtic, D Alistarh arXiv preprint arXiv:2410.14649, 2024 | 1 | 2024 |
Vision models can be efficiently specialized via few-shot task-aware compression D Kuznedelev, S Tabesh, K Noorbakhsh, E Frantar, S Beery, E Kurtic, ... arXiv preprint arXiv:2303.14409, 2023 | 1 | 2023 |