Follow
Denis Kuznedelev
Denis Kuznedelev
Verified email at skoltech.ru
Title
Cited by
Cited by
Year
A critical look at the evaluation of GNNs under heterophily: Are we really making progress?
O Platonov, D Kuznedelev, M Diskin, A Babenko, L Prokhorenkova
arXiv preprint arXiv:2302.11640, 2023
2212023
Spqr: A sparse-quantized representation for near-lossless llm weight compression
T Dettmers, R Svirschevski, V Egiazarian, D Kuznedelev, E Frantar, ...
arXiv preprint arXiv:2306.03078, 2023
2182023
Extreme compression of large language models via additive quantization
V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh
arXiv preprint arXiv:2401.06118, 2024
742024
Characterizing graph datasets for node classification: Homophily-heterophily dichotomy and beyond
O Platonov, D Kuznedelev, A Babenko, L Prokhorenkova
Advances in Neural Information Processing Systems 36, 523-548, 2023
742023
Influence of relativistic rotation on the confinement-deconfinement transition in gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
Physical Review D 103 (9), 094515, 2021
682021
Study of the confinement/deconfinement phase transition in rotating lattice SU (3) gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
JETP Letters 112, 6-12, 2020
372020
Lattice study of QCD at finite chiral density: topology and confinement
N Astrakhantsev, VV Braguta, AY Kotov, DD Kuznedelev, AA Nikolaev
The European Physical Journal A 57 (1), 15, 2021
212021
Sparse fine-tuning for inference acceleration of large language models
E Kurtic, D Kuznedelev, E Frantar, M Goin, D Alistarh
arXiv preprint arXiv:2310.06927, 2023
172023
Lattice study of the confinement/deconfinement transition in rotating gluodynamics
VV Braguta, AY Kotov, DD Kuznedelev, AA Roenko
arXiv preprint arXiv:2110.12302, 2021
152021
Cap: Correlation-aware pruning for highly-accurate sparse vision models
D Kuznedelev, E Kurtić, E Frantar, D Alistarh
Advances in Neural Information Processing Systems 36, 28805-28831, 2023
132023
Pv-tuning: Beyond straight-through estimation for extreme llm compression
V Malinovskii, D Mazur, I Ilin, D Kuznedelev, K Burlachenko, K Yi, ...
Advances in Neural Information Processing Systems 37, 5074-5121, 2025
92025
Evaluating robustness and uncertainty of graph models under structural distributional shifts
G Bazhenov, D Kuznedelev, A Malinin, A Babenko, L Prokhorenkova
Advances in Neural Information Processing Systems 36, 75567-75594, 2023
82023
Accurate neural network pruning requires rethinking sparse optimization
D Kuznedelev, E Kurtic, E Iofinova, E Frantar, A Peste, D Alistarh
arXiv preprint arXiv:2308.02060, 2023
82023
A view of mini-batch SGD via generating functions: conditions of convergence, phase transitions, benefit from negative momenta
M Velikanov, D Kuznedelev, D Yarotsky
arXiv preprint arXiv:2206.11124, 2022
62022
Lattice study of QCD properties under extreme conditions: temperature, density, rotation, and magnetic field
NY Astrakhantsev, VV Braguta, NV Kolomoyets, AY Kotov, ...
Physics of Particles and Nuclei 52, 536-541, 2021
62021
Does Diffusion Beat GAN in Image Super Resolution?
D Kuznedelev, V Startsev, D Shlenskii, S Kastryulin
arXiv preprint arXiv:2405.17261, 2024
52024
Extreme compression of large language models via additive quantization, 2024
V Egiazarian, A Panferov, D Kuznedelev, E Frantar, A Babenko, D Alistarh
URL https://arxiv. org/abs/2401.06118 63, 0
5
ovit: An accurate second-order pruning framework for vision transformers
D Kuznedelev, E Kurtic, E Frantar, D Alistarh
32022
Evopress: Towards optimal dynamic model compression via evolutionary search
O Sieberling, D Kuznedelev, E Kurtic, D Alistarh
arXiv preprint arXiv:2410.14649, 2024
12024
Vision models can be efficiently specialized via few-shot task-aware compression
D Kuznedelev, S Tabesh, K Noorbakhsh, E Frantar, S Beery, E Kurtic, ...
arXiv preprint arXiv:2303.14409, 2023
12023
The system can't perform the operation now. Try again later.
Articles 1–20