Common limitations of image processing metrics: A picture story A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ... arXiv preprint arXiv:2104.05642, 2021 | 222 | 2021 |
Metrics reloaded: recommendations for image analysis validation L Maier-Hein, A Reinke, P Godau, MD Tizabi, F Buettner, E Christodoulou, ... Nature methods 21 (2), 195-212, 2024 | 188 | 2024 |
Metrics reloaded: Pitfalls and recommendations for image analysis validation L Maier-Hein, A Reinke, T Rädsch, B Menze, PF Jäger arXiv. org, 2022 | 128 | 2022 |
Understanding metric-related pitfalls in image analysis validation A Reinke, MD Tizabi, M Baumgartner, M Eisenmann, D Heckmann-Nötzel, ... Nature methods 21 (2), 182-194, 2024 | 91 | 2024 |
Labelling instructions matter in biomedical image analysis. T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ... Nature Machine Intelligence 5, 273–283, 2023 | 62 | 2023 |
Why is the winner the best? M Eisenmann, A Reinke, V Weru, MD Tizabi, F Isensee, TJ Adler, S Ali, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023 | 27 | 2023 |
Common limitations of image processing metrics: A picture story. arXiv A Reinke, M Eisenmann, MD Tizabi, CH Sudre, T Rädsch, M Antonelli, ... arXiv preprint arXiv:2104.05642, 2021 | 21 | 2021 |
Common limitations of performance metrics in biomedical image analysis A Reinke, M Eisenmann, MD Tizabi, CH Sudre, T Rädsch, M Antonelli, ... Medical Imaging with Deep Learning, 2021 | 20 | 2021 |
Metrics reloaded: a new recommendation framework for biomedical image analysis validation A Reinke, H Müller Proceedings of the Medical Imaging with Deep Learning (MIDL 2022), 2022 | 18 | 2022 |
What your radiologist might be missing: using machine learning to identify mislabeled instances of X-ray images T Rädsch, S Eckhardt, F Leiser, KD Pandl, S Thiebes, A Sunyaev Proceedings of the 54th Hawaii International Conference on System Sciences, 2021 | 13 | 2021 |
Common limitations of image processing metrics: a picture story, 2022. doi: 10.48550 A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ... arXiv preprint arXiv.2104.05642, 0 | 8 | |
Common limitations of image processing metrics: A picture story. 10.48550 A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ... arXiv preprint ARXIV.2104.05642, 2021 | 5 | 2021 |
Quality Assured: Rethinking Annotation Strategies in Imaging AI T Rädsch, A Reinke, V Weru, MD Tizabi, N Heller, F Isensee, ... European Conference on Computer Vision 2024, 2024 | 3 | 2024 |
Towards a Machine Learning-based Decision Support System for Dispatching Helicopters in New Zealand T Rädsch, M Reuter-Oppermann, D Richards | 2 | 2021 |
Kidney and Kidney Tumor Segmentation: MICCAI 2023 Challenge, KiTS 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings N Heller, F Isensee, T Rädsch Springer Nature, 2024 | 1 | 2024 |
In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review A Jiménez-Sánchez, NR Avlona, S de Boer, VM Campello, A Feragen, ... arXiv preprint arXiv:2501.10727, 2025 | | 2025 |
Labeling instructions matter in biomedical image analysis. T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ... Medical Imaging meets NeurIPS Workshop at NeurIPS 2022, 2022 | | 2022 |
Labeling instructions matter in biomedical image analysis. An annotator-centric perspective. T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ... Human-Centered AI Workshop at NeurIPS 2022, 2022 | | 2022 |
ASAM e.V. OpenLABEL V1.0.0 Standard M Nieto, N Croce, T Rädsch, J Zhang, S Funke, N Hagedorn https://www.asam.net/project-detail/asam-openlabel-v100/, 2021 | | 2021 |
OpenLABEL Concept Paper N Croce, T Rädsch, M Nieto, J Zhang, S Funke, N Hagedorn Association for Standardization of Automation and Measuring Systems e.V …, 2020 | | 2020 |