Follow
Tim Rädsch
Tim Rädsch
Heidelberg University, Helmholtz Imaging & DKFZ
Verified email at dkfz-heidelberg.de
Title
Cited by
Cited by
Year
Common limitations of image processing metrics: A picture story
A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ...
arXiv preprint arXiv:2104.05642, 2021
2222021
Metrics reloaded: recommendations for image analysis validation
L Maier-Hein, A Reinke, P Godau, MD Tizabi, F Buettner, E Christodoulou, ...
Nature methods 21 (2), 195-212, 2024
1882024
Metrics reloaded: Pitfalls and recommendations for image analysis validation
L Maier-Hein, A Reinke, T Rädsch, B Menze, PF Jäger
arXiv. org, 2022
1282022
Understanding metric-related pitfalls in image analysis validation
A Reinke, MD Tizabi, M Baumgartner, M Eisenmann, D Heckmann-Nötzel, ...
Nature methods 21 (2), 182-194, 2024
912024
Labelling instructions matter in biomedical image analysis.
T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ...
Nature Machine Intelligence 5, 273–283, 2023
622023
Why is the winner the best?
M Eisenmann, A Reinke, V Weru, MD Tizabi, F Isensee, TJ Adler, S Ali, ...
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
272023
Common limitations of image processing metrics: A picture story. arXiv
A Reinke, M Eisenmann, MD Tizabi, CH Sudre, T Rädsch, M Antonelli, ...
arXiv preprint arXiv:2104.05642, 2021
212021
Common limitations of performance metrics in biomedical image analysis
A Reinke, M Eisenmann, MD Tizabi, CH Sudre, T Rädsch, M Antonelli, ...
Medical Imaging with Deep Learning, 2021
202021
Metrics reloaded: a new recommendation framework for biomedical image analysis validation
A Reinke, H Müller
Proceedings of the Medical Imaging with Deep Learning (MIDL 2022), 2022
182022
What your radiologist might be missing: using machine learning to identify mislabeled instances of X-ray images
T Rädsch, S Eckhardt, F Leiser, KD Pandl, S Thiebes, A Sunyaev
Proceedings of the 54th Hawaii International Conference on System Sciences, 2021
132021
Common limitations of image processing metrics: a picture story, 2022. doi: 10.48550
A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ...
arXiv preprint arXiv.2104.05642, 0
8
Common limitations of image processing metrics: A picture story. 10.48550
A Reinke, MD Tizabi, CH Sudre, M Eisenmann, T Rädsch, M Baumgartner, ...
arXiv preprint ARXIV.2104.05642, 2021
52021
Quality Assured: Rethinking Annotation Strategies in Imaging AI
T Rädsch, A Reinke, V Weru, MD Tizabi, N Heller, F Isensee, ...
European Conference on Computer Vision 2024, 2024
32024
Towards a Machine Learning-based Decision Support System for Dispatching Helicopters in New Zealand
T Rädsch, M Reuter-Oppermann, D Richards
22021
Kidney and Kidney Tumor Segmentation: MICCAI 2023 Challenge, KiTS 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
N Heller, F Isensee, T Rädsch
Springer Nature, 2024
12024
In the Picture: Medical Imaging Datasets, Artifacts, and their Living Review
A Jiménez-Sánchez, NR Avlona, S de Boer, VM Campello, A Feragen, ...
arXiv preprint arXiv:2501.10727, 2025
2025
Labeling instructions matter in biomedical image analysis.
T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ...
Medical Imaging meets NeurIPS Workshop at NeurIPS 2022, 2022
2022
Labeling instructions matter in biomedical image analysis. An annotator-centric perspective.
T Rädsch, A Reinke, V Weru, MD Tizabi, N Schreck, AE Kavur, ...
Human-Centered AI Workshop at NeurIPS 2022, 2022
2022
ASAM e.V. OpenLABEL V1.0.0 Standard
M Nieto, N Croce, T Rädsch, J Zhang, S Funke, N Hagedorn
https://www.asam.net/project-detail/asam-openlabel-v100/, 2021
2021
OpenLABEL Concept Paper
N Croce, T Rädsch, M Nieto, J Zhang, S Funke, N Hagedorn
Association for Standardization of Automation and Measuring Systems e.V …, 2020
2020
The system can't perform the operation now. Try again later.
Articles 1–20