Multi-label self-supervised learning with scene images K Zhu, M Fu, J Wu Proceedings of the IEEE/CVF International Conference on Computer Vision …, 2023 | 13 | 2023 |
Dtl: Disentangled transfer learning for visual recognition M Fu, K Zhu, J Wu Proceedings of the AAAI Conference on Artificial Intelligence 38 (11), 12082 …, 2024 | 12 | 2024 |
Worst case matters for few-shot recognition M Fu, YH Cao, J Wu European Conference on Computer Vision, 99-115, 2022 | 9 | 2022 |
Deeply aligned adaptation for cross-domain object detection M Fu, Z Xie, W Li, L Duan arXiv preprint arXiv:2004.02093, 2020 | 8 | 2020 |
Instance-based Max-margin for Practical Few-shot Recognition M Fu, K Zhu Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | 5 | 2024 |
Low-rank Attention Side-Tuning for Parameter-Efficient Fine-Tuning N Tang, M Fu, K Zhu, J Wu arXiv preprint arXiv:2402.04009, 2024 | 4 | 2024 |
Rectify the regression bias in long-tailed object detection K Zhu, M Fu, J Shao, T Liu, J Wu European Conference on Computer Vision, 198-214, 2024 | 3 | 2024 |
Quantization without Tears M Fu, H Yu, J Shao, J Zhou, K Zhu, J Wu arXiv preprint arXiv:2411.13918, 2024 | | 2024 |
Unified Low-rank Compression Framework for Click-through Rate Prediction H Yu, M Fu, J Ding, Y Zhou, J Wu Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and …, 2024 | | 2024 |
Minimal Interaction Edge Tuning: A New Paradigm for Visual Adaptation N Tang, M Fu, J Wu arXiv preprint arXiv:2406.17559, 2024 | | 2024 |