Tslearn, A Machine Learning Toolkit for Time Series Data R Tavenard, J Faouzi, G Vandewiele, F Divo, G Androz, C Holtz, M Payne, ... Journal of Machine Learning Research 21 (118), 1-6, 2020 | 732* | 2020 |
Die Vorratsdatenspeicherung in Europa T Riebe, J Haunschild, F Divo, M Lang, G Roitburd, J Franken, C Reuter Datenschutz und Datensicherheit-DuD 44 (5), 316-321, 2020 | 5 | 2020 |
United We Pretrain, Divided We Fail! Representation Learning for Time Series by Pretraining on 75 Datasets at Once M Kraus, F Divo, D Steinmann, DS Dhami, K Kersting arXiv preprint arXiv:2402.15404, 2024 | 1 | 2024 |
The Constitutional Filter S Kohaut, F Divo, B Flade, DS Dhami, J Eggert, K Kersting arXiv preprint arXiv:2412.18347, 2024 | | 2024 |
Navigating Shortcuts, Spurious Correlations, and Confounders: From Origins via Detection to Mitigation D Steinmann, F Divo, M Kraus, A Wüst, L Struppek, F Friedrich, K Kersting arXiv preprint arXiv:2412.05152, 2024 | | 2024 |
xLSTM-Mixer: Multivariate Time Series Forecasting by Mixing via Scalar Memories M Kraus, F Divo, DS Dhami, K Kersting arXiv preprint arXiv:2410.16928, 2024 | | 2024 |
Forecasting Company Fundamentals F Divo, E Endress, K Endler, K Kersting, DS Dhami arXiv preprint arXiv:2411.05791, 2024 | | 2024 |
Graph Neural Networks Need Cluster-Normalize-Activate Modules A Skryagin, F Divo, MA Ali, DS Dhami, K Kersting The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024 | | 2024 |