Follow
Pierre-Paul De Breuck
Pierre-Paul De Breuck
Verified email at rub.de - Homepage
Title
Cited by
Cited by
Year
Materials property prediction for limited datasets enabled by feature selection and joint learning with MODNet
PP De Breuck, G Hautier, GM Rignanese
npj computational materials 7 (1), 83, 2021
772021
Robust model benchmarking and bias-imbalance in data-driven materials science: a case study on MODNet
PP De Breuck, ML Evans, GM Rignanese
Journal of Physics: Condensed Matter 33 (40), 404002, 2021
442021
A simple denoising approach to exploit multi-fidelity data for machine learning materials properties
X Liu, PP De Breuck, L Wang, GM Rignanese
npj Computational Materials 8 (1), 233, 2022
102022
Accurate experimental band gap predictions with multifidelity correction learning
PP De Breuck, G Heymans, GM Rignanese
Journal of Materials Informatics 2, 10, 2022
92022
Combination of ab initio descriptors and machine learning approach for the prediction of the plasticity mechanisms in β-metastable Ti alloys
M Coffigniez, PP De Breuck, L Choisez, M Marteleur, MJ van Setten, ...
Materials & Design 239, 112801, 2024
62024
Machine learning materials properties for small datasets
PP De Breuck, G Hautier, GM Rignanese
APS March Meeting Abstracts 2021, E60. 009, 2021
42021
Influence of Roughness and Coating on the Rebound of Droplets on Fabrics
PJ Cruz, PP De Breuck, GM Rignanese, K Glinel, AM Jonas
Surfaces and Interfaces 36, 102524, 2023
32023
A generative material transformer using Wyckoff representation
PP De Breuck, HA Piracha, MAL Marques
arXiv preprint arXiv:2501.16051, 2025
2025
Optical materials discovery and design with federated databases and machine learning
V Trinquet, ML Evans, CJ Hargreaves, PP De Breuck, GM Rignanese
Faraday Discussions 256, 459-482, 2025
2025
Active Learning: Accelerating Discovery of Optimal Optical Materials through Synergistic Computational Approaches
V Trinquet, M Evans, PP De Breuck, GM Rignanese
Bulletin of the American Physical Society, 2024
2024
Small datasets, big predictions: learning methods for uncertainty-aware modelling of multi-fidelity material properties
PP De Breuck
UCL-Université Catholique de Louvain, 2024
2024
Bias-imbalance in data-driven materials science: a case study on MODNet
PP De Breuck, M Evans, GM Rignanese
APS March Meeting Abstracts 2022, T32. 006, 2022
2022
Vibrational properties of solids: a machine learning approach
PP De Breuck, GM Rignanese
The system can't perform the operation now. Try again later.
Articles 1–13