On the saturation effect of kernel ridge regression Y Li, H Zhang, Q Lin arXiv preprint arXiv:2405.09362, 2024 | 25 | 2024 |
On the asymptotic learning curves of kernel ridge regression under power-law decay Y Li, H Zhang, Q Lin Advances in Neural Information Processing Systems 36, 2024 | 21 | 2024 |
On the optimality of misspecified kernel ridge regression H Zhang, Y Li, W Lu, Q Lin International Conference on Machine Learning, 41331-41353, 2023 | 20 | 2023 |
On the eigenvalue decay rates of a class of neural-network related kernel functions defined on general domains Y Li, Z Yu, G Chen, Q Lin arXiv preprint arXiv:2305.02657, 2023 | 19* | 2023 |
On the optimality of misspecified spectral algorithms H Zhang, Y Li, Q Lin Journal of Machine Learning Research 25 (188), 1-50, 2024 | 17 | 2024 |
Kernel interpolation generalizes poorly Y Li, H Zhang, Q Lin Biometrika 111 (2), 715-722, 2024 | 14 | 2024 |
Optimal rate of kernel regression in large dimensions W Lu, H Zhang, Y Li, M Xu, Q Lin arXiv preprint arXiv:2309.04268, 2023 | 9 | 2023 |
Generalization error curves for analytic spectral algorithms under power-law decay Y Li, W Gan, Z Shi, Q Lin arXiv preprint arXiv:2401.01599, 2024 | 7 | 2024 |
Optimal rates of kernel ridge regression under source condition in large dimensions H Zhang, Y Li, W Lu, Q Lin arXiv preprint arXiv:2401.01270, 2024 | 6 | 2024 |