Deep-neural-network solution of the electronic Schrödinger equation J Hermann, Z Schätzle, F Noé Nature Chemistry 12 (10), 891-897, 2020 | 593 | 2020 |
Electronic excited states in deep variational Monte Carlo MT Entwistle, Z Schätzle, PA Erdman, J Hermann, F Noé Nature Communications 14 (1), 274, 2023 | 46 | 2023 |
Convergence to the fixed-node limit in deep variational Monte Carlo Z Schätzle, J Hermann, F Noé The Journal of Chemical Physics 154 (12), 2021 | 24 | 2021 |
DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions Z Schätzle, PB Szabó, M Mezera, J Hermann, F Noé The Journal of Chemical Physics 159 (9), 2023 | 19 | 2023 |
Deep neural network solution of the electronic schrödinger equation (2019) J Hermann, Z Schätzle, F Noé arXiv preprint arXiv:1909.08423, 0 | 7 | |
An improved penalty-based excited-state variational Monte Carlo approach with deep-learning ansatzes PB Szabó, Z Schätzle, MT Entwistle, F Noé Journal of Chemical Theory and Computation 20 (18), 7922-7935, 2024 | 4 | 2024 |
Highly accurate real-space electron densities with neural networks L Cheng, PB Szabó, Z Schätzle, DP Kooi, J Köhler, KJH Giesbertz, F Noé, ... The Journal of Chemical Physics 162 (3), 2025 | 2 | 2025 |
An improved penalty-based excited-state variational Monte Carlo approach with deep-learning ansatzes P Bernát Szabó, Z Schätzle, MT Entwistle, F Noé arXiv e-prints, arXiv: 2405.17089, 2024 | | 2024 |
Machine learning many-electron wave functions via backflow transformations D Luo, BK Clark, D Pfau, JS Spencer, AGG Matthews, WMC Foulkes, ... Phys. Rev. Lett 122, 226401, 2019 | | 2019 |