Follow
Javier Antoran
Title
Cited by
Cited by
Year
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
U Bhatt, J Antorán, Y Zhang, QV Liao, P Sattigeri, R Fogliato, ...
2021 AAAI/ACM Conference on AI, Ethics, and Society, 2020
2892020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
J Antorán, U Bhatt, T Adel, A Weller, JM Hernández-Lobato
International Conference on Learning Representations (ICLR), 2021, 2020
1402020
Depth uncertainty in neural networks
J Antorán, JU Allingham, JM Hernández-Lobato
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020
1252020
Bayesian Deep Learning via Subnetwork Inference
E Daxberger, E Nalisnick, JU Allingham, J Antorán, ...
International Conference on Machine Learning, 2021, 2020
1082020
Deep end-to-end causal inference
T Geffner, J Antoran, A Foster, W Gong, C Ma, E Kiciman, A Sharma, ...
arXiv preprint arXiv:2202.02195, 2022
832022
Adapting the linearised laplace model evidence for modern deep learning
J Antorán, D Janz, JU Allingham, E Daxberger, RR Barbano, E Nalisnick, ...
International Conference on Machine Learning, 796-821, 2022
322022
Sampling-based inference for large linear models, with application to linearised Laplace
J Antorán, S Padhy, R Barbano, E Nalisnick, D Janz, ...
arXiv preprint arXiv:2210.04994, 2022
232022
Sampling from Gaussian process posteriors using stochastic gradient descent
JA Lin, J Antorán, S Padhy, D Janz, JM Hernández-Lobato, A Terenin
Advances in Neural Information Processing Systems 36, 36886-36912, 2023
222023
SE (3) equivariant augmented coupling flows
L Midgley, V Stimper, J Antorán, E Mathieu, B Schölkopf, ...
Advances in Neural Information Processing Systems 36, 2024
162024
Uncertainty Estimation for Computed Tomography with a Linearised Deep Image Prior
J Antorán, R Barbano, J Leuschner, JM Hernández-Lobato, B Jin
arXiv preprint arXiv:2203.00479, 2022
16*2022
Disentangling and learning robust representations with natural clustering
J Antoran, A Miguel
2019 18th IEEE International Conference On Machine Learning And Applications …, 2019
162019
Expressive yet tractable Bayesian deep learning via subnetwork inference
E Daxberger, E Nalisnick, J Allingham, J Antorán, JM Hernández-Lobato
152020
Linearised laplace inference in networks with normalisation layers and the neural g-prior
J Antorán, JU Allingham, D Janz, E Daxberger, E Nalisnick, ...
Fourth Symposium on Advances in Approximate Bayesian Inference, 2022
102022
Understanding Uncertainty in Bayesian Neural Networks
JA Cabiscol
92019
Bayesian experimental design for computed tomography with the linearised deep image prior
R Barbano, J Leuschner, J Antorán, B Jin, JM Hernández-Lobato
Adaptive Experimental Design and Active Learning workshop at ICML 2022, 2022
82022
Stochastic Gradient Descent for Gaussian Processes Done Right
JA Lin, S Padhy, J Antorán, A Tripp, A Terenin, C Szepesvári, ...
arXiv preprint arXiv:2310.20581, 2023
72023
& Xiang, A.(2021, July). Uncertainty as a form of transparency: Measuring, communicating, and using uncertainty
U Bhatt, J Antorán, Y Zhang, QV Liao, P Sattigeri, R Fogliato
Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, 401-413, 0
7
Variational depth search in ResNets
J Antorán, JU Allingham, JM Hernández-Lobato
arXiv preprint arXiv:2002.02797, 2020
62020
Online laplace model selection revisited
JA Lin, J Antorán, JM Hernández-Lobato
arXiv preprint arXiv:2307.06093, 2023
42023
A probabilistic deep image prior over image space
R Barbano, J Antorán, JM Hernández-Lobato, B Jin
Fourth Symposium on Advances in Approximate Bayesian Inference, 2022
42022
The system can't perform the operation now. Try again later.
Articles 1–20