Existence and Uniqueness of Invariant Measures for Stochastic Reaction–Diffusion Equations in Unbounded Domains O Misiats, O Stanzhytskyi, NK Yip Journal of Theoretical Probability 29 (3), 996-1026, 2016 | 60 | 2016 |
Second-order accurate monotone finite volume scheme for Richards’ equation O Misiats, K Lipnikov Journal of Computational Physics 239, 123-137, 2013 | 33 | 2013 |
The Ginzburg–Landau functional with a discontinuous and rapidly oscillating pinning term. Part I: The zero degree case M Dos Santos, P Mironescu, O Misiats Communications in Contemporary Mathematics 13 (05), 885-914, 2011 | 19 | 2011 |
Ginzburg-Landau model with small pinning domains MD Santos, O Misiats Networks and Heterogeneous Media 6, 715-753, 2011 | 17 | 2011 |
Approximation of the optimal control problem on an interval with a family of optimization problems on time scales O Lavrova, V Mogylova, O Stanzhytskyi, O Misiats Nonlinear Dynamics and Systems Theory 17 (3), 303-314, 2017 | 16 | 2017 |
On global existence and blowup of solutions of stochastic Keller–Segel type equation O Misiats, O Stanzhytskyi, I Topaloglu Nonlinear Differential Equations and Applications NoDEA 29 (1), 3, 2022 | 15 | 2022 |
Invariant measures for stochastic reaction–diffusion equations with weakly dissipative nonlinearities O Misiats, O Stanzhytskyi, NK Yip Stochastics 92 (8), 1197-1222, 2020 | 13 | 2020 |
Asymptotic analysis and homogenization of invariant measures O Misiats, O Stanzhytskyi, NK Yip Stochastics and Dynamics 19 (02), 1950015, 2019 | 12 | 2019 |
Electrical Control of Effective Mass, Damping, and Stiffness of MEMS Devices J Clark, O Misiats, S Sayed IEEE Sensors Journal, 2016 | 12 | 2016 |
On the Bidomain equations driven by stochastic forces. M Hieber, O Misiats, O Stanzhytskyi Discrete & Continuous Dynamical Systems: Series A 40 (11), 2020 | 10 | 2020 |
Invariant measure for neutral stochastic functional differential equations with non-Lipschitz coefficients A Stanzhytskyi, O Stanzhytskyi, O Misiats arXiv preprint arXiv:2111.06492, 2021 | 9 | 2021 |
Convergence of Space-Time Discrete Threshold Dynamics to Anisotropic Motion by Mean Curvature O Misiats, NK Yip Discrete and Continuous Dynamical Systems, Series A 36 (11), 2016 | 9 | 2016 |
Minimizers of the magnetic Ginzburg–Landau functional in simply connected domain with prescribed degree on the boundary L Berlyand, O Misiats, V Rybalko Communications in Contemporary Mathematics 13 (01), 53-66, 2011 | 7 | 2011 |
Near boundary vortices in a magnetic Ginzburg–Landau model: Their locations via tight energy bounds L Berlyand, O Misiats, V Rybalko Journal of Functional Analysis 258 (5), 1728-1762, 2010 | 6 | 2010 |
Energy minimizing twinning with variable volume fraction, for two nonlinear elastic phases with a single rank-one connection S Conti, RV Kohn, O Misiats Mathematical Models and Methods in Applied Sciences 32 (08), 1671-1723, 2022 | 5 | 2022 |
Strong solutions and asymptotic behavior of bidomain equations with random noise O Kapustyan, O Misiats, O Stanzhytskyi Stochastics and Dynamics 22 (06), 2250027, 2022 | 4 | 2022 |
The necessary conditions for the existence of local Ginzburg–Landau minimizers with prescribed degrees on the boundary O Misiats Asymptotic Analysis 89 (1-2), 37-61, 2014 | 4 | 2014 |
Asymptotic behavior of stochastic functional differential evolution equation J Clark, O Misiats, V Mogylova, O Stanzhytskyi Electronic Journal of Differential Equations 2023 (01-87), 35-21, 2023 | 3 | 2023 |
On minimizers of an anisotropic liquid drop model O Misiats, I Topaloglu arXiv preprint arXiv:1912.09495, 2019 | 3 | 2019 |
Invariant measure for stochastic functional differential equations in Hilbert spaces O Misiats, V Mogylova, O Stanzhytskyi arXiv preprint arXiv:2011.07034, 2020 | 2 | 2020 |