Follow
Lukas Mauch
Lukas Mauch
Sony Europe B.V.
Verified email at sony.com
Title
Cited by
Cited by
Year
A new approach for supervised power disaggregation by using a deep recurrent LSTM network
L Mauch, B Yang
2015 IEEE global conference on signal and information processing (GlobalSIP …, 2015
2452015
Mixed precision dnns: All you need is a good parametrization
S Uhlich, L Mauch, F Cardinaux, K Yoshiyama, JA Garcia, S Tiedemann, ...
arXiv preprint arXiv:1905.11452, 2019
1722019
Automated reference-free detection of motion artifacts in magnetic resonance images
T Küstner, A Liebgott, L Mauch, P Martirosian, F Bamberg, K Nikolaou, ...
Magnetic Resonance Materials in Physics, Biology and Medicine 31, 243-256, 2018
1142018
Automated detection of solar cell defects with deep learning
A Bartler, L Mauch, B Yang, M Reuter, L Stoicescu
2018 26th European signal processing conference (EUSIPCO), 2035-2039, 2018
1132018
A novel DNN-HMM-based approach for extracting single loads from aggregate power signals
L Mauch, B Yang
2016 IEEE International Conference on Acoustics, Speech and Signal …, 2016
852016
A machine-learning framework for automatic reference-free quality assessment in MRI
T Küstner, S Gatidis, A Liebgott, M Schwartz, L Mauch, P Martirosian, ...
Magnetic resonance imaging 53, 134-147, 2018
742018
Differentiable quantization of deep neural networks
S Uhlich, L Mauch, K Yoshiyama, F Cardinaux, JA Garcia, S Tiedemann, ...
arXiv preprint arXiv:1905.11452 2 (8), 2019
412019
Neural network ensembles to real-time identification of plug-level appliance measurements
KS Barsim, L Mauch, B Yang
arXiv preprint arXiv:1802.06963, 2018
312018
How well can HMM model load signals
L Mauch, KS Barsim, B Yang
Proceeding of the 3rd international workshop on non-intrusive load …, 2016
272016
Iteratively training look-up tables for network quantization
F Cardinaux, S Uhlich, K Yoshiyama, JA García, L Mauch, S Tiedemann, ...
IEEE Journal of Selected Topics in Signal Processing 14 (4), 860-870, 2020
202020
A novel layerwise pruning method for model reduction of fully connected deep neural networks
L Mauch, B Yang
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
162017
On semantic image segmentation using deep convolutional neural network with shortcuts and easy class extension
C Wang, L Mauch, Z Guo, B Yang
2016 Sixth international conference on image processing theory, tools and …, 2016
132016
Neural Network Libraries: A Deep Learning Framework Designed from Engineers' Perspectives
T Narihira, J Alonsogarcia, F Cardinaux, A Hayakawa, M Ishii, K Iwaki, ...
arXiv preprint arXiv:2102.06725, 2021
122021
Automatic motion artifact detection for whole-body magnetic resonance imaging
T Küstner, M Jandt, A Liebgott, L Mauch, P Martirosian, F Bamberg, ...
2018 IEEE International Conference on Acoustics, Speech and Signal …, 2018
112018
A novel benchmark for few-shot semantic segmentation in the era of foundation models
R Bensaid, V Gripon, F Leduc-Primeau, L Mauch, GB Hacene, ...
arXiv preprint arXiv:2401.11311, 2024
102024
Subset selection for visualization of relevant image fractions for deep learning based semantic image segmentation
L Mauch, C Wang, B Yang
Journal of the Franklin Institute 355 (4), 1931-1944, 2018
72018
On the contextual aspects of using deep convolutional neural network for semantic image segmentation
C Wang, L Mauch, MM Saxena, B Yang
Journal of Electronic Imaging 27 (5), 051223-051223, 2018
62018
Motion artifact quantification and localization for whole-body MRI
T Küstner, M Jandt, A Liebgott, L Mauch, P Martirosian, F Bamberg, ...
Proceedings of the International Society for Magnetic Resonance in Medicine …, 2018
62018
Selecting optimal layer reduction factors for model reduction of deep neural networks
L Mauch, B Yang
2017 IEEE International Conference on Acoustics, Speech and Signal …, 2017
62017
Order-preserving gflownets
Y Chen, L Mauch
arXiv preprint arXiv:2310.00386, 2023
52023
The system can't perform the operation now. Try again later.
Articles 1–20