Follow
Connor W. Coley
Title
Cited by
Cited by
Year
Analyzing learned molecular representations for property prediction
K Yang, K Swanson, W Jin, C Coley, P Eiden, H Gao, A Guzman-Perez, ...
Journal of chemical information and modeling 59 (8), 3370-3388, 2019
16252019
A robotic platform for flow synthesis of organic compounds informed by AI planning
CW Coley, DA Thomas III, JAM Lummiss, JN Jaworski, CP Breen, ...
Science 365 (6453), eaax1566, 2019
8932019
Scientific discovery in the age of artificial intelligence
H Wang, T Fu, Y Du, W Gao, K Huang, Z Liu, P Chandak, S Liu, ...
Nature 620 (7972), 47-60, 2023
8802023
Prediction of organic reaction outcomes using machine learning
CW Coley, R Barzilay, TS Jaakkola, WH Green, KF Jensen
ACS central science 3 (5), 434-443, 2017
7532017
A graph-convolutional neural network model for the prediction of chemical reactivity
CW Coley, W Jin, L Rogers, TF Jamison, TS Jaakkola, WH Green, ...
Chemical science 10 (2), 370-377, 2019
7172019
Machine learning in computer-aided synthesis planning
CW Coley, WH Green, KF Jensen
Accounts of chemical research 51 (5), 1281-1289, 2018
6782018
Convolutional embedding of attributed molecular graphs for physical property prediction
CW Coley, R Barzilay, WH Green, TS Jaakkola, KF Jensen
Journal of chemical information and modeling 57 (8), 1757-1772, 2017
5002017
Using machine learning to predict suitable conditions for organic reactions
H Gao, TJ Struble, CW Coley, Y Wang, WH Green, KF Jensen
ACS central science 4 (11), 1465-1476, 2018
3842018
Computer-assisted retrosynthesis based on molecular similarity
CW Coley, L Rogers, WH Green, KF Jensen
ACS central science 3 (12), 1237-1245, 2017
3782017
Predicting organic reaction outcomes with weisfeiler-lehman network
W Jin, C Coley, R Barzilay, T Jaakkola
Advances in neural information processing systems 30, 2017
3562017
The synthesizability of molecules proposed by generative models
W Gao, CW Coley
Journal of chemical information and modeling 60 (12), 5714-5723, 2020
3252020
Autonomous discovery in the chemical sciences part I: Progress
CW Coley, NS Eyke, KF Jensen
arXiv preprint arXiv:2003.13754, 2020
3252020
SCScore: synthetic complexity learned from a reaction corpus
CW Coley, L Rogers, WH Green, KF Jensen
Journal of chemical information and modeling 58 (2), 252-261, 2018
3182018
Therapeutics data commons: Machine learning datasets and tasks for drug discovery and development
K Huang, T Fu, W Gao, Y Zhao, Y Roohani, J Leskovec, CW Coley, ...
arXiv preprint arXiv:2102.09548, 2021
3102021
Autonomous discovery in the chemical sciences part II: Outlook
CW Coley, NS Eyke, KF Jensen
Angewandte Chemie International Edition, 2019
2482019
Accelerating high-throughput virtual screening through molecular pool-based active learning
DE Graff, EI Shakhnovich, CW Coley
Chemical science 12 (22), 7866-7881, 2021
2452021
Uncertainty quantification using neural networks for molecular property prediction
L Hirschfeld, K Swanson, K Yang, R Barzilay, CW Coley
Journal of Chemical Information and Modeling 60 (8), 3770-3780, 2020
2432020
The open reaction database
SM Kearnes, MR Maser, M Wleklinski, A Kast, AG Doyle, SD Dreher, ...
Journal of the American Chemical Society 143 (45), 18820-18826, 2021
2282021
BigSMILES: a structurally-based line notation for describing macromolecules
TS Lin, CW Coley, H Mochigase, HK Beech, W Wang, Z Wang, E Woods, ...
ACS central science 5 (9), 1523-1531, 2019
2282019
Retrosynthesis prediction with conditional graph logic network
H Dai, C Li, C Coley, B Dai, L Song
Advances in Neural Information Processing Systems 32, 2019
2232019
The system can't perform the operation now. Try again later.
Articles 1–20