Follow
Morgane Austern
Morgane Austern
Verified email at fas.harvard.edu
Title
Cited by
Cited by
Year
Non-vacuous generalization bounds at the imagenet scale: a PAC-bayesian compression approach
W Zhou, V Veitch, M Austern, RP Adams, P Orbanz
arXiv preprint arXiv:1804.05862, 2018
2252018
Asymptotics of cross-validation
M Austern, W Zhou
arXiv preprint arXiv:2001.11111, 2020
492020
Debiased machine learning without sample-splitting for stable estimators
Q Chen, V Syrgkanis, M Austern
Advances in Neural Information Processing Systems 35, 3096-3109, 2022
362022
Compressibility and generalization in large-scale deep learning
W Zhou, V Veitch, M Austern, RP Adams, P Orbanz
arXiv preprint arXiv:1804.05862 2, 2018
202018
Efficient concentration with Gaussian approximation
M Austern, L Mackey
arXiv preprint arXiv:2208.09922, 2022
192022
Limit theorems for distributions invariant under groups of transformations
M Austern, P Orbanz
The Annals of Statistics 50 (4), 1960-1991, 2022
182022
Quantifying the effects of data augmentation
KH Huang, P Orbanz, M Austern
arXiv preprint arXiv:2202.09134 1, 2022
132022
Empirical risk minimization and stochastic gradient descent for relational data
V Veitch, M Austern, W Zhou, DM Blei, P Orbanz
The 22nd International Conference on Artificial Intelligence and Statistics …, 2019
132019
Asymptotics of network embeddings learned via subsampling
A Davison, M Austern
Journal of Machine Learning Research 24 (138), 1-120, 2023
102023
Asymptotics of the empirical bootstrap method beyond asymptotic normality
M Austern, V Syrgkanis
arXiv preprint arXiv:2011.11248, 2020
62020
Wasserstein-p bounds in the central limit theorem under local dependence
T Liu, M Austern
Electronic Journal of Probability 28, 1-47, 2023
42023
On the gaussianity of kolmogorov complexity of mixing sequences
M Austern, A Maleki
IEEE Transactions on Information Theory 66 (2), 1232-1247, 2019
42019
Statistical Guarantees for Link Prediction using Graph Neural Networks
A Chung, A Saberi, M Austern
arXiv preprint arXiv:2402.02692, 2024
32024
Gaussian universality for approximately polynomial functions of high-dimensional data
KH Huang, M Austern, P Orbanz
arXiv preprint arXiv:2403.10711, 2024
22024
Random Geometric Graph Alignment with Graph Neural Networks
S Liu, M Austern
arXiv preprint arXiv:2402.07340, 2024
22024
Smooth Edgeworth Expansion and Wasserstein- Bounds for Mixing Random Fields
T Liu, M Austern
arXiv preprint arXiv:2309.07031, 2023
22023
Inference on Optimal Dynamic Policies via Softmax Approximation
Q Chen, M Austern, V Syrgkanis
arXiv preprint arXiv:2303.04416, 2023
22023
Wasserstein-p Bounds in the Central Limit Theorem Under Weak Dependence
T Liu, M Austern
arXiv preprint arXiv:2209.09377, 2022
22022
A free central-limit theorem for dynamical systems
M Austern
arXiv preprint arXiv:2005.10923, 2020
22020
Limit theorems for invariant distributions
M Austern, P Orbanz
arXiv preprint arXiv:1806.10661, 2018
22018
The system can't perform the operation now. Try again later.
Articles 1–20