Seguir
Qinbin Li
Qinbin Li
Dirección de correo verificada de hust.edu.cn - Página principal
Título
Citado por
Citado por
Año
A Survey on Federated Learning Systems: Vision, Hype and Reality for Data Privacy and Protection
Q Li, Z Wen, Z Wu, S Hu, N Wang, Y Li, X Liu, B He
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2019
13892019
Model-Contrastive Federated Learning
Q Li, B He, D Song
CVPR 2021, 2021
12902021
Federated learning on non-iid data silos: An experimental study
Q Li*, Y Diao*, Q Chen, B He
ICDE 2022, 2022
11342022
Practical Federated Gradient Boosting Decision Trees
Q Li, Z Wen, B He
AAAI 2020, 2020
2342020
ThunderSVM: A fast SVM library on GPUs and CPUs
Z Wen, J Shi, Q Li, B He, J Chen
Journal of Machine Learning Research 19 (21), 1-5, 2018
2292018
Practical One-Shot Federated Learning for Cross-Silo Setting
Q Li, B He, D Song
IJCAI 2021, 2021
132*2021
Privacy-Preserving Gradient Boosting Decision Trees
Q Li, Z Wu, Z Wen, B He
AAAI 2020, 2020
972020
The oarf benchmark suite: Characterization and implications for federated learning systems
S Hu, Y Li, X Liu, Q Li, Z Wu, B He
ACM Transactions on Intelligent Systems and Technology (TIST), 2021
622021
Exploiting GPUs for efficient gradient boosting decision tree training
Z Wen, J Shi, B He, J Chen, K Ramamohanarao, Q Li
IEEE Transactions on Parallel and Distributed Systems 30 (12), 2706-2717, 2019
572019
Practical vertical federated learning with unsupervised representation learning
Z Wu, Q Li, B He
IEEE Transactions on Big Data, 2022
442022
Unifed: A benchmark for federated learning frameworks
X Liu, T Shi, C Xie, Q Li, K Hu, H Kim, X Xu, B Li, D Song
arXiv preprint arXiv:2207.10308, 2022
312022
ThunderGBM: Fast GBDTs and Random Forests on GPUs
Z Wen, H Liu, J Shi, Q Li, B He, J Chen
The Journal of Machine Learning Research (JMLR), 2020
292020
FedTree: A Federated Learning System For Trees
Q Li, Z Wu, Y Cai, Y Han, CM Yung, T Fu, B He
MLSys 2023, 2023
232023
A Coupled Design of Exploiting Record Similarity for Practical Vertical Federated Learning
Z Wu, Q Li, B He
NeurIPS 2022, 2022
202022
Towards Addressing Label Skews in One-shot Federated Learning
Y Diao, Q Li, B He
ICLR 2023, 2023
192023
SoK: Privacy-Preserving Data Synthesis
Y Hu, F Wu, Q Li, Y Long, GM Garrido, C Ge, B Ding, D Forsyth, B Li, ...
S&P 2024, 2023
172023
Improving privacy-preserving vertical federated learning by efficient communication with admm
C Xie, PY Chen, Q Li, N Arash, C Zhang, B Li
SaTML 2024, 2024
162024
LLM-PBE: Assessing Data Privacy in Large Language Models
Q Li*, J Hong*, C Xie*, J Tan, R Xin, J Hou, X Yin, Z Wang, D Hendrycks, ...
VLDB 2024, 2024
152024
Adaptive Kernel Value Caching for SVM Training
Q Li, Z Wen, B He
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2019
152019
Adversarial Collaborative Learning on Non-IID Features
Q Li, B He, D Song
ICML 2023, 2023
122023
El sistema no puede realizar la operación en estos momentos. Inténtalo de nuevo más tarde.
Artículos 1–20